Economics 204 Summer/Fall 2018 Lecture 1–Monday July 23, 2018

Section 1.2. Methods of Proof

We begin by looking at the notion of proof. What is a proof? "Proof" has a formal definition in mathematical logic, and a formal proof is long and unreadable. In practice, you need to learn to recognize a proof when you see one.

We will begin by discussing four main methods of proof that you will encounter frequently:

- deduction
- contraposition
- induction
- contradiction

We look at each in turn.

Proof by Deduction:

A proof by deduction is composed of a list of statements, the last of which is the statement to be proven. Each statement in the list is either

- an axiom: a fundamental assumption about mathematics, or part of definition of the object under study; or
- a previously established theorem; or
- follows from previous statements in the list by a valid rule of inference

Example: Prove that the function $f(x) = x^2$ is continuous at x = 5.

Recall from one-variable calculus that $f(x) = x^2$ is continuous at x = 5 means

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ |x - 5| < \delta \Rightarrow |f(x) - f(5)| < \varepsilon$$

That is, "for every $\varepsilon > 0$ there exists a $\delta > 0$ such that whenever x is within δ of 5, f(x) is within ε of f(5)."

To prove the claim, we must systematically verify that this definition is satisfied.

Proof: Let $\varepsilon > 0$ be given. Let

$$\delta = \min\left\{1, \frac{\varepsilon}{11}\right\} > 0$$

Why??

Suppose $|x-5| < \delta$. Since $\delta \le 1, 4 < x < 6$, so 9 < x+5 < 11 and |x+5| < 11. Then

$$|f(x) - f(5)| = |x^2 - 25|$$

= $|(x+5)(x-5)|$
= $|x+5||x-5|$
 $< 11 \cdot \delta$
 $\leq 11 \cdot \frac{\varepsilon}{11}$
= ε

Thus, we have shown that for every $\varepsilon > 0$, there exists $\delta > 0$ such that $|x - 5| < \delta \Rightarrow |f(x) - f(5)| < \varepsilon$, so $f(x) = x^2$ is continuous at x = 5.

Proof by Contraposition:

First recall some basics of logic.

 $\neg P$ means "P is false."

 $P \wedge Q$ means "P is true and Q is true."

 $P \lor Q$ means "P is true or Q is true (or possibly both)."

 $\neg P \land Q$ means $(\neg P) \land Q; \neg P \lor Q$ means $(\neg P) \lor Q$.

 $P \Rightarrow Q$ means "whenever P is satisfied, Q is also satisfied."

Formally, $P \Rightarrow Q$ is equivalent to $\neg P \lor Q$.

The *contrapositive* of the statement $P \Rightarrow Q$ is the statement

 $\neg Q \Rightarrow \neg P$

These are logically equivalent, as we prove below.

Theorem 1 $P \Rightarrow Q$ is true if and only if $\neg Q \Rightarrow \neg P$ is true.

Proof: Suppose $P \Rightarrow Q$ is true. Then either P is false, or Q is true (or possibly both). Therefore, either $\neg P$ is true, or $\neg Q$ is false (or possibly both), so $\neg(\neg Q) \lor (\neg P)$ is true, $\neg Q \Rightarrow \neg P$ is true.

Conversely, suppose $\neg Q \Rightarrow \neg P$ is true. Then either $\neg Q$ is false, or $\neg P$ is true (or possibly both), so either Q is true, or P is false (or possibly both), so $\neg P \lor Q$ is true, so $P \Rightarrow Q$ is true.

So to prove a statement $P \Rightarrow Q$, it is equivalent to prove the contrapositive $\neg Q \Rightarrow \neg P$. See de la Fuente for an example of the use of proof by contraposition.

Proof by Induction:

We illustrate with an example.

Theorem 2 For every $n \in \mathbf{N}_0 = \{0, 1, 2, 3, ...\},\$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

i.e. $1 + 2 + \dots + n = \frac{n(n+1)}{2}$.

Proof:

Base step n = 0: The left hand side (LHS) above $= \sum_{k=1}^{0} k =$ the empty sum = 0. The right hand side (RHS) $= \frac{0 \cdot 1}{2} = 0$ so the claim is true for n = 0.

Induction step: Suppose

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \text{ for some } n \ge 0$$

We must show that

$$\sum_{k=1}^{n+1} k = \frac{(n+1)((n+1)+1)}{2}$$

LHS =
$$\sum_{k=1}^{n+1} k$$

= $\sum_{k=1}^{n} k + (n+1)$
= $\frac{n(n+1)}{2} + (n+1)$ by the Induction hypothesis
= $(n+1)\left(\frac{n}{2}+1\right)$
= $\frac{(n+1)(n+2)}{2}$
RHS = $\frac{(n+1)((n+1)+1)}{2}$
= $\frac{(n+1)(n+2)}{2}$
= LHS

so by mathematical induction, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ for all $n \in \mathbf{N}_0$.

Proof by Contradiction:

A proof by contradiction proves a statement by assuming its negation is true and working until reaching a contradiction. Again we illustrate with an example.

Theorem 3 There is no rational number q such that $q^2 = 2$.

Proof: Suppose $q^2 = 2, q \in \mathbf{Q}$. We can write $q = \frac{m}{n}$ for some integers $m, n \in \mathbf{Z}$. Moreover, we can assume that m and n have no common factor; if they did, we could divide it out.¹

$$2 = q^2 = \frac{m^2}{n^2}$$

Therefore, $m^2 = 2n^2$, so m^2 is even.

We claim that m is even. If not², then m is odd, so m = 2p + 1 for some $p \in \mathbb{Z}$. Then

$$m^{2} = (2p+1)^{2}$$

= $4p^{2} + 4p + 1$
= $2(2p^{2} + 2p) + 1$

which is odd, contradiction. Therefore, m is even, so m = 2r for some $r \in \mathbb{Z}$.

$$4r^2 = (2r)^2$$
$$= m^2$$
$$= 2n^2$$
$$n^2 = 2r^2$$

so n^2 is even, which implies (by the argument given above) that n is even. Therefore, n = 2s for some $s \in \mathbb{Z}$, so m and n have a common factor, namely 2, contradiction. Therefore, there is no rational number q such that $q^2 = 2$.

Section 1.3 Equivalence Relations

Definition 4 A binary relation R from X to Y is a subset $R \subseteq X \times Y$. We write xRy if $(x, y) \in R$ and "not xRy" if $(x, y) \notin R$. $R \subseteq X \times X$ is a binary relation on X.

Example: Suppose $f : X \to Y$ is a function from X to Y. The binary relation $R \subseteq X \times Y$ defined by

$$xRy \iff f(x) = y$$

 $^{^{1}}$ This is actually a subtle point. We are using the fact that the expression of a natural number as a product of primes is unique.

²This is a proof by contradiction within a proof by contradiction!

is exactly the graph of the function f. A function can be considered a binary relation R from X to Y such that for each $x \in X$ there exists exactly one $y \in Y$ such that $(x, y) \in R$.

Example: Suppose $X = \{1, 2, 3\}$ and R is the binary relation on X given by $R = \{(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)\}$. This is the binary relation "is weakly greater than," or \geq .

Definition 5 A binary relation R on X is

- (i) reflexive if $\forall x \in X, xRx$
- (ii) symmetric if $\forall x, y \in X, xRy \Leftrightarrow yRx$
- (iii) transitive if $\forall x, y, z \in X, (xRy \land yRz) \Rightarrow xRz$

Definition 6 A binary relation R on X is an *equivalence relation* if it is reflexive, symmetric and transitive.

Definition 7 Given an equivalence relation R on X, write

$$[x] = \{y \in X : xRy\}$$

[x] is called the *equivalence class containing x*.

The set of equivalence classes is the quotient of X with respect to R, denoted X/R.

Example: The binary relation \geq on **R** is not an equivalence relation because it is not symmetric.

Example: Let $X = \{a, b, c, d\}$ and $R = \{(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)\}$. *R* is an equivalence relation (why?) and the equivalence classes of *R* are $\{a, b\}$ and $\{c, d\}$. $X/R = \{\{a, b\}, \{c, d\}\}$

The following theorem shows that the equivalence classes of an equivalence relation form a *partition* of X: every element of X belongs to exactly one equivalence class.

Theorem 8 Let R be an equivalence relation on X. Then $\forall x \in X, x \in [x]$.

Given $x, y \in X$, either [x] = [y] or $[x] \cap [y] = \emptyset$.

Proof: If $x \in X$, then xRx because R is reflexive, so $x \in [x]$.

Suppose $x, y \in X$. If $[x] \cap [y] = \emptyset$, we're done. So suppose $[x] \cap [y] \neq \emptyset$. We must show that [x] = [y], i.e. that the elements of [x] are exactly the same as the elements of [y].

Choose $z \in [x] \cap [y]$. Then $z \in [x]$, so xRz. By symmetry, zRx. Also $z \in [y]$, so yRz. By symmetry again, zRy. Now choose $w \in [x]$. By definition, xRw. Since zRx and R is transitive, zRw. By symmetry, wRz. Since zRy, wRy by transitivity again. By symmetry, yRw, so $w \in [y]$, which shows that $[x] \subseteq [y]$. Similarly, $[y] \subseteq [x]$, so [x] = [y].

Section 1.4 Cardinality

Definition 9 Two sets A, B are numerically equivalent (or have the same cardinality) if there is a bijection $f: A \to B$, that is, a function $f: A \to B$ that is 1-1 $(a \neq a' \Rightarrow f(a) \neq f(a'))$, and onto $(\forall b \in B \exists a \in A \text{ s.t. } f(a) = b)$.

Roughly speaking, if two sets have the same cardinality then elements of the sets can be uniquely matched up and paired off.

A set is either finite or infinite. A set is *finite* if it is numerically equivalent to $\{1, \ldots, n\}$ for some n. A set that is not finite is *infinite*.

For example, the set $A = \{2, 4, 6, \dots, 50\}$ is numerically equivalent to the set $\{1, 2, \dots, 25\}$ under the function f(n) = 2n. In particular, this shows that A is finite. The set $B = \{1, 4, 9, 16, 25, 36, 49 \dots\} = \{n^2 : n \in \mathbb{N}\}$ is numerically equivalent to \mathbb{N} and is infinite.

An infinite set is either countable or uncountable. A set is *countable* if it is numerically equivalent to the set of natural numbers $\mathbf{N} = \{1, 2, 3, ...\}$. An infinite set that is not countable is called *uncountable*.

Example: The set of integers \mathbf{Z} is countable.

$$\mathbf{Z} = \{0, 1, -1, 2, -2, \ldots\}$$

Define $f : \mathbf{N} \to \mathbf{Z}$ by

$$f(1) = 0$$

$$f(2) = 1$$

$$f(3) = -1$$

$$\vdots$$

$$f(n) = (-1)^{n} \left\lfloor \frac{n}{2} \right\rfloor$$

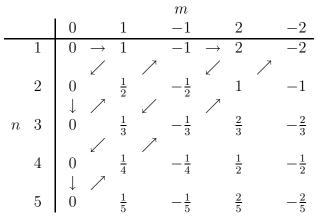
where $\lfloor x \rfloor$ is the greatest integer less than or equal to x. It is straightforward to verify that f is one-to-one and onto.

Notice $\mathbf{Z} \supset \mathbf{N}$ but $\mathbf{Z} \neq \mathbf{N}$; indeed, $\mathbf{Z} \setminus \mathbf{N}$ is infinite! So statements like "One half of the elements of \mathbf{Z} are in \mathbf{N} " are not meaningful.

Theorem 10 The set of rational numbers \mathbf{Q} is countable.

"Picture Proof":

$$\mathbf{Q} = \left\{ \frac{m}{n} : m, n \in \mathbf{Z}, n \neq 0 \right\}$$
$$= \left\{ \frac{m}{n} : m \in \mathbf{Z}, n \in \mathbf{N} \right\}$$



Go back and forth on upward-sloping diagonals, omitting the repeats:

$$f(1) = 0f(2) = 1f(3) = \frac{1}{2}f(4) = -1:$$

 $f: \mathbf{N} \to \mathbf{Q}, f$ is one-to-one and onto.

Notice that although \mathbf{Q} appears to be much larger than \mathbf{N} , in fact they are the same size.