Economics 204 Summer/Fall 2018
 Lecture 3-Wednesday July 25, 2018

Section 2.1. Metric Spaces and Normed Spaces

Here we seek to generalize notions of distance and length in \mathbf{R}^{n} to abstract settings.

Definition 1 A metric space is a pair (X, d), where X is a set and $d: X \times X \rightarrow \mathbf{R}_{+}$a function satisfying

1. $d(x, y) \geq 0, d(x, y)=0 \Leftrightarrow x=y \forall x, y \in X$
2. $d(x, y)=d(y, x) \forall x, y \in X$
3. triangle inequality:

$$
d(x, z) \leq d(x, y)+d(y, z) \quad \forall x, y, z \in X
$$

A function $d: X \times X \rightarrow \mathbf{R}_{+}$satisfying 1-3 is called a metric on X.

A metric gives a notion of distance between elements of X.

Definition 2 Let V be a vector space over \mathbf{R}. A norm on V is a function $\|\cdot\|: V \rightarrow \mathbf{R}_{+}$ satisfying

1. $\|x\| \geq 0 \forall x \in V$
2. $\|x\|=0 \Leftrightarrow x=0 \forall x \in V$
3. triangle inequality:

$$
\begin{array}{ccc}
\|x+y\| \leq\|x\|+\|y\| \forall x, y \in V \\
& & x \\
x & & \searrow y \\
0 & & \rightarrow \\
y & & x+y \\
& & \\
& & \nearrow x
\end{array}
$$

4. $\|\alpha x\|=|\alpha|\|x\| \forall \alpha \in \mathbf{R}, x \in V$

A normed vector space is a vector space over \mathbf{R} equipped with a norm.

A norm gives a notion of length of a vector in V.
Example: In \mathbf{R}^{n}, the standard notion of distance between two vectors x and y measures the length of the difference $x-y$, i.e., $d(x, y)=\|x-y\|=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$.

In an abstract normed vector space, the norm can be used analogously to define a notion of distance.

Theorem 3 Let $(V,\|\cdot\|)$ be a normed vector space. Let $d: V \times V \Rightarrow \mathbf{R}_{+}$be defined by

$$
d(v, w)=\|v-w\|
$$

Then (V, d) is a metric space.
Proof: We must verify that d satisfies all the properties of a metric.

1. Let $v, w \in V$. Then by definition, $d(v, w)=\|v-w\| \geq 0$ (why?), and

$$
\begin{aligned}
d(v, w)=0 & \Leftrightarrow\|v-w\|=0 \\
& \Leftrightarrow v-w=0 \\
& \Leftrightarrow(v+(-w))+w=w \\
& \Leftrightarrow v+((-w)+w)=w \\
& \Leftrightarrow v+0=w \\
& \Leftrightarrow v=w
\end{aligned}
$$

2. First, note that for any $x \in V, 0 \cdot x=(0+0) \cdot x=0 \cdot x+0 \cdot x$, so $0 \cdot x=0$. Then $0=0 \cdot x=(1-1) \cdot x=1 \cdot x+(-1) \cdot x=x+(-1) \cdot x$, so we have $(-1) \cdot x=(-x)$. Then let $v, w \in V$.

$$
\begin{aligned}
d(v, w) & =\|v-w\| \\
& =|-1|\|v-w\| \\
& =\|(-1)(v+(-w))\| \\
& =\|(-1) v+(-1)(-w)\| \\
& =\|-v+w\| \\
& =\|w+(-v)\| \\
& =\|w-v\| \\
& =d(w, v)
\end{aligned}
$$

3. Let $u, w, v \in V$.

$$
\begin{aligned}
d(u, w) & =\|u-w\| \\
& =\|u+(-v+v)-w\| \\
& =\|u-v+v-w\| \\
& \leq\|u-v\|+\|v-w\| \\
& =d(u, v)+d(v, w)
\end{aligned}
$$

Thus d is a metric on V.

Examples of Normed Vector Spaces

- \mathbf{E}^{n} : n-dimensional Euclidean space.

$$
V=\mathbf{R}^{n},\|x\|_{2}=|x|=\sqrt{\sum_{i=1}^{n}\left(x_{i}\right)^{2}}
$$

- $V=\mathbf{R}^{n},\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ (the "taxi cab" norm or L^{1} norm)
- $V=\mathbf{R}^{n},\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$ (the maximum norm, or sup norm, or L^{∞} norm)
- $C([0,1]),\|f\|_{\infty}=\sup \{|f(t)|: t \in[0,1]\}$
- $C([0,1]),\|f\|_{2}=\sqrt{\int_{0}^{1}(f(t))^{2} d t}$
- $C([0,1]),\|f\|_{1}=\int_{0}^{1}|f(t)| d t$

Theorem 4 (Cauchy-Schwarz Inequality)

If $v, w \in \mathbf{R}^{n}$, then

$$
\begin{aligned}
\left(\sum_{i=1}^{n} v_{i} w_{i}\right)^{2} & \leq\left(\sum_{i=1}^{n} v_{i}^{2}\right)\left(\sum_{i=1}^{n} w_{i}^{2}\right) \\
|v \cdot w|^{2} & \leq|v|^{2}|w|^{2} \\
|v \cdot w| & \leq|v||w|
\end{aligned}
$$

Proof: Read the proof in de La Fuente.
The Cauchy-Schwarz Inequality is essential in proving the triangle inequality in \mathbf{E}^{n}. Deriving the triangle inequality in \mathbf{E}^{n} from the Cauchy-Schwarz inequality is a good exercise. The Cauchy-Schwarz inequality can also be viewed as a consequence of geometry in \mathbf{R}^{2}, in particular the law of cosines. Note that for $v, w \in \mathbf{R}^{2}, v \cdot w=|v||w| \cos \theta$ where θ is the angle between v and w; see Figure $1 .{ }^{1}$

Notice that a given vector space may have many different norms. As a trivial example, if $\|\cdot\|$ is a norm on a vector space V, so are $2\|\cdot\|$ and $3\|\cdot\|$ and $k\|\cdot\|$ for any $k>0$. Less trivially, \mathbf{R}^{n} supports many different norms as in the examples above. Different norms on a given vector space yield different geometric properties; for example, see Figure 2 for different norms on \mathbf{R}^{2}.

[^0]

Figure 1: θ is the angle between v and w.

Definition 5 Two norms $\|\cdot\|$ and $\|\cdot\|^{*}$ on the same vector space V are said to be Lipschitzequivalent (or equivalent) if $\exists m, M>0$ s.t. $\forall x \in V$,

$$
m\|x\| \leq\|x\|^{*} \leq M\|x\|
$$

Equivalently, $\exists m, M>0$ s.t. $\forall x \in V, x \neq 0$,

$$
m \leq \frac{\|x\|^{*}}{\|x\|} \leq M
$$

If two norms are equivalent, then they define the same notions of convergence and continuity. For topological purposes, equivalent norms are indistinguishable. For example, suppose two norms $\|\cdot\|$ and $\|\cdot\|^{*}$ on the vector space V are equivalent, and fix $x \in V$. Let $B_{\varepsilon}(x,\|\cdot\|)$ denote the $\|\cdot\|$-ball of radius ε about x; similarly, let $B_{\varepsilon}\left(x,\|\cdot\|^{*}\right)$ denote the $\|\cdot\|^{*}$-ball of radius ε about x. That is,

$$
\begin{aligned}
B_{\varepsilon}(x,\|\cdot\|) & =\{y \in V:\|x-y\|<\varepsilon\} \\
B_{\varepsilon}\left(x,\|\cdot\|^{*}\right) & =\left\{y \in V:\|x-y\|^{*}<\varepsilon\right\}
\end{aligned}
$$

Then for any $\varepsilon>0$,

$$
B_{\frac{\varepsilon}{M}}(x,\|\cdot\|) \subseteq B_{\varepsilon}\left(x,\|\cdot\|^{*}\right) \subseteq B_{\frac{\varepsilon}{m}}(x,\|\cdot\|)
$$

See Figure 3.
In \mathbf{R}^{n} (or any finite-dimensional normed vector space), all norms are equivalent. This says roughly that, up to a difference in scaling, for topological purposes there is a unique norm in \mathbf{R}^{n}.

Theorem 6 All norms on \mathbf{R}^{n} are equivalent. ${ }^{2}$

[^1]However, infinite-dimensional spaces support norms that are not equivalent. For example, on $C([0,1])$, let f_{n} be the function

$$
f_{n}(t)= \begin{cases}1-n t & \text { if } t \in\left[0, \frac{1}{n}\right] \\ 0 & \text { if } t \in\left(\frac{1}{n}, 1\right]\end{cases}
$$

Then

$$
\frac{\left\|f_{n}\right\|_{1}}{\left\|f_{n}\right\|_{\infty}}=\frac{\frac{1}{2 n}}{1}=\frac{1}{2 n} \rightarrow 0
$$

Definition 7 In a metric space (X, d), a subset $S \subseteq X$ is bounded if $\exists x \in X, \beta \in \mathbf{R}$ such that $\forall s \in S, d(s, x) \leq \beta$.

In a metric space (X, d), define

$$
\begin{aligned}
B_{\varepsilon}(x) & =\{y \in X: d(y, x)<\varepsilon\} \\
& =\text { open ball with center } x \text { and radius } \varepsilon \\
B_{\varepsilon}[x] & =\{y \in X: d(y, x) \leq \varepsilon\} \\
& =\text { closed ball with center } x \text { and radius } \varepsilon
\end{aligned}
$$

We can use the metric d to define a generalization of "radius". In a metric space (X, d), define the diameter of a subset $S \subseteq X$ by

$$
\operatorname{diam}(S)=\sup \left\{d\left(s, s^{\prime}\right): s, s^{\prime} \in S\right\}
$$

Similarly, we can define the distance from a point to a set, and distance between sets, as follows:

$$
\begin{aligned}
d(A, x) & =\inf _{a \in A} d(a, x) \\
d(A, B) & =\inf _{a \in A} d(B, a) \\
& =\inf \{d(a, b): a \in A, b \in B\}
\end{aligned}
$$

Note that $d(A, x)$ cannot be a metric (since a metric is a function on $X \times X$, the first and second arguments must be objects of the same type); in addition, $d(A, B)$ does not define a metric on the space of subsets of X (why?). ${ }^{3}$

Section 2.2. Convergence of Sequences in Metric Spaces

Definition 8 Let (X, d) be a metric space. A sequence $\left\{x_{n}\right\}$ converges to x (written $x_{n} \rightarrow x$ or $\lim _{n \rightarrow \infty} x_{n}=x$) if

$$
\forall \varepsilon>0 \exists N(\varepsilon) \in \mathbf{N} \text { s.t. } n>N(\varepsilon) \Rightarrow d\left(x_{n}, x\right)<\varepsilon
$$

[^2]Notice that this is exactly the same as the definition of convergence of a sequence of real numbers, except we replace the standard measure of distance $|\cdot|$ in \mathbf{R} by the general metric d.

Theorem 9 (Uniqueness of Limits) In a metric space (X, d), if $x_{n} \rightarrow x$ and $x_{n} \rightarrow x^{\prime}$, then $x=x^{\prime}$.

Proof: Suppose $\left\{x_{n}\right\}$ is a sequence in $X, x_{n} \rightarrow x, x_{n} \rightarrow x^{\prime}, x \neq x^{\prime}$. Since $x \neq x^{\prime}, d\left(x, x^{\prime}\right)>0$. Let

$$
\varepsilon=\frac{d\left(x, x^{\prime}\right)}{2}
$$

Then there exist $N(\varepsilon)$ and $N^{\prime}(\varepsilon)$ such that

$$
\begin{aligned}
n>N(\varepsilon) & \Rightarrow d\left(x_{n}, x\right)<\varepsilon \\
n>N^{\prime}(\varepsilon) & \Rightarrow d\left(x_{n}, x^{\prime}\right)<\varepsilon
\end{aligned}
$$

Choose

$$
n>\max \left\{N(\varepsilon), N^{\prime}(\varepsilon)\right\}
$$

Then

$$
\begin{aligned}
d\left(x, x^{\prime}\right) & \leq d\left(x, x_{n}\right)+d\left(x_{n}, x^{\prime}\right) \\
& <\varepsilon+\varepsilon \\
& =2 \varepsilon \\
& =d\left(x, x^{\prime}\right) \\
d\left(x, x^{\prime}\right) & <d\left(x, x^{\prime}\right)
\end{aligned}
$$

a contradiction.

Definition 10 An element c is a cluster point of a sequence $\left\{x_{n}\right\}$ in a metric space (X, d) if $\forall \varepsilon>0,\left\{n: x_{n} \in B_{\varepsilon}(c)\right\}$ is an infinite set. Equivalently,

$$
\forall \varepsilon>0, N \in \mathbf{N} \exists n>N \text { s.t. } x_{n} \in B_{\varepsilon}(c)
$$

Example:

$$
x_{n}=\left\{\begin{array}{cl}
1-\frac{1}{n} & \text { if } n \text { even } \\
\frac{1}{n} & \text { if } n \text { odd }
\end{array}\right.
$$

For n large and odd, x_{n} is close to zero; for n large and even, x_{n} is close to one. The sequence does not converge; the set of cluster points is $\{0,1\}$.

If $\left\{x_{n}\right\}$ is a sequence and $n_{1}<n_{2}<n_{3}<\cdots$ then $\left\{x_{n_{k}}\right\}$ is called a subsequence.
Note that a subsequence is formed by taking some of the elements of the parent sequence, in the same order.

Example: $x_{n}=\frac{1}{n}$, so $\left\{x_{n}\right\}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right)$. If $n_{k}=2 k$, then $\left\{x_{n_{k}}\right\}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots\right)$.

Theorem 11 (2.4 in De La Fuente, plus ...) Let (X, d) be a metric space, $c \in X$, and $\left\{x_{n}\right\}$ a sequence in X. Then c is a cluster point of $\left\{x_{n}\right\}$ if and only if there is a subsequence $\left\{x_{n_{k}}\right\}$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=c$.

Proof: Suppose c is a cluster point of $\left\{x_{n}\right\}$. We inductively construct a subsequence that converges to c. For $k=1,\left\{n: x_{n} \in B_{1}(c)\right\}$ is infinite, so nonempty; let

$$
n_{1}=\min \left\{n: x_{n} \in B_{1}(c)\right\}
$$

Now, suppose we have chosen $n_{1}<n_{2}<\cdots<n_{k}$ such that

$$
x_{n_{j}} \in B_{\frac{1}{j}}(c) \text { for } j=1, \ldots, k
$$

$\left\{n: x_{n} \in B_{\frac{1}{k+1}}(c)\right\}$ is infinite, so it contains at least one element bigger than n_{k}, so let

$$
n_{k+1}=\min \left\{n: n>n_{k}, x_{n} \in B_{\frac{1}{k+1}}(c)\right\}
$$

Thus, we have chosen $n_{1}<n_{2}<\cdots<n_{k}<n_{k+1}$ such that

$$
x_{n_{j}} \in B_{\frac{1}{j}}(c) \text { for } j=1, \ldots, k, k+1
$$

Thus, by induction, we obtain a subsequence $\left\{x_{n_{k}}\right\}$ such that

$$
x_{n_{k}} \in B_{\frac{1}{k}}(c)
$$

Given any $\varepsilon>0$, by the Archimedean property, there exists $N(\varepsilon)>1 / \varepsilon$.

$$
\begin{aligned}
k>N(\varepsilon) & \Rightarrow x_{n_{k}} \in B_{\frac{1}{k}}(c) \\
& \Rightarrow \quad x_{n_{k}} \in B_{\varepsilon}(c)
\end{aligned}
$$

so

$$
x_{n_{k}} \rightarrow c \text { as } k \rightarrow \infty
$$

Conversely, suppose that there is a subsequence $\left\{x_{n_{k}}\right\}$ converging to c. Given any $\varepsilon>0$, there exists $K \in \mathbf{N}$ such that

$$
k>K \Rightarrow d\left(x_{n_{k}}, c\right)<\varepsilon \Rightarrow x_{n_{k}} \in B_{\varepsilon}(c)
$$

Therefore,

$$
\left\{n: x_{n} \in B_{\varepsilon}(c)\right\} \supseteq\left\{n_{K+1}, n_{K+2}, n_{K+3}, \ldots\right\}
$$

Since $n_{K+1}<n_{K+2}<n_{K+3}<\cdots$, this set is infinite, so c is a cluster point of $\left\{x_{n}\right\}$.

Section 2.3. Sequences in R and \mathbf{R}^{m}

Definition 12 A sequence of real numbers $\left\{x_{n}\right\}$ is increasing (decreasing) if $x_{n+1} \geq x_{n}$ $\left(x_{n+1} \leq x_{n}\right)$ for all n.

Definition 13 If $\left\{x_{n}\right\}$ is a sequence of real numbers, $\left\{x_{n}\right\}$ tends to infinity (written $x_{n} \rightarrow \infty$ or $\lim x_{n}=\infty$) if

$$
\forall K \in \mathbf{R} \exists N(K) \text { s.t. } n>N(K) \Rightarrow x_{n}>K
$$

Similarly define $x_{n} \rightarrow-\infty$ or $\lim x_{n}=-\infty$.

Notice we don't say the sequence converges to infinity; the term "converge" is limited to the case of finite limits.

Theorem 14 (Theorem 3.1') Let $\left\{x_{n}\right\}$ be an increasing (decreasing) sequence of real numbers. Then $\lim _{n \rightarrow \infty} x_{n}=\sup \left\{x_{n}: n \in \mathbf{N}\right\}\left(\lim _{n \rightarrow \infty} x_{n}=\inf \left\{x_{n}: n \in \mathbf{N}\right\}\right)$. In particular, the limit exists.

Proof: Read the proof in the book, and figure out how to handle the unbounded case.

Lim Sups and Lim Infs: ${ }^{4}$

Consider a sequence $\left\{x_{n}\right\}$ of real numbers. Let

$$
\begin{aligned}
\alpha_{n} & =\sup \left\{x_{k}: k \geq n\right\} \\
& =\sup \left\{x_{n}, x_{n+1}, x_{n+2}, \ldots\right\} \\
\beta_{n} & =\inf \left\{x_{k}: k \geq n\right\}
\end{aligned}
$$

Either $\alpha_{n}=+\infty$ for all n, or $\alpha_{n} \in \mathbf{R}$ and $\alpha_{1} \geq \alpha_{2} \geq \alpha_{3} \geq \cdots$. Either $\beta_{n}=-\infty$ for all n, or $\beta_{n} \in \mathbf{R}$ and $\beta_{1} \leq \beta_{2} \leq \beta_{3} \leq \cdots$.

[^3]
Definition 15

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} x_{n} & =\left\{\begin{array}{cl}
+\infty & \text { if } \alpha_{n}=+\infty \text { for all } n \\
\lim \alpha_{n} & \text { otherwise }
\end{array}\right. \\
\liminf _{n \rightarrow \infty} x_{n} & =\left\{\begin{array}{cl}
-\infty & \text { if } \beta_{n}=-\infty \text { for all } n \\
\lim \beta_{n} & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Theorem 16 Let $\left\{x_{n}\right\}$ be a sequence of real numbers. Then

$$
\begin{gathered}
\quad \lim _{n \rightarrow \infty} x_{n}=\gamma \in \mathbf{R} \cup\{-\infty, \infty\} \\
\Leftrightarrow \\
\lim \sup _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n}=\gamma
\end{gathered}
$$

Theorem 17 (Theorem 3.2, Rising Sun Lemma) Every sequence of real numbers contains an increasing subsequence or a decreasing subsequence or both.

Proof: Let

$$
S=\left\{s \in \mathbf{N}: x_{s}>x_{n} \quad \forall n>s\right\}
$$

Either S is infinite, or S is finite.
If S is infinite, let

$$
\begin{aligned}
n_{1} & =\min S \\
n_{2} & =\min \left(S \backslash\left\{n_{1}\right\}\right) \\
n_{3} & =\min \left(S \backslash\left\{n_{1}, n_{2}\right\}\right) \\
& \vdots \\
n_{k+1} & =\min \left(S \backslash\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}\right)
\end{aligned}
$$

Then $n_{1}<n_{2}<n_{3}<\cdots$.

$$
\begin{aligned}
x_{n_{1}}>x_{n_{2}} & \text { since } n_{1} \in S \text { and } n_{2}>n_{1} \\
x_{n_{2}}>x_{n_{3}} & \text { since } n_{2} \in S \text { and } n_{3}>n_{2} \\
& \vdots \\
x_{n_{k}}>x_{n_{k+1}} & \text { since } n_{k} \in S \text { and } n_{k+1}>n_{k}
\end{aligned}
$$

so $\left\{x_{n_{k}}\right\}$ is a strictly decreasing subsequence of $\left\{x_{n}\right\}$.
If S is finite and nonempty, let $n_{1}=(\max S)+1$; if $S=\emptyset$, let $n_{1}=1$. Then

$$
\begin{array}{ccl}
n_{1} \notin S & \text { so } & \exists n_{2}>n_{1} \text { s.t. } x_{n_{2}} \geq x_{n_{1}} \\
n_{2} \notin S & \text { so } & \exists n_{3}>n_{2} \text { s.t. } x_{n_{3}} \geq x_{n_{2}} \\
& \vdots & \\
n_{k} \notin S & \text { so } \quad \exists n_{k+1}>n_{k} \text { s.t. } x_{n_{k+1}} \geq x_{n_{k}}
\end{array}
$$

so $\left\{x_{n_{k}}\right\}$ is a (weakly) increasing subsequence of $\left\{x_{n}\right\}$.

Theorem 18 (Thm. 3.3, Bolzano-Weierstrass) Every bounded sequence of real numbers contains a convergent subsequence.

Proof: Let $\left\{x_{n}\right\}$ be a bounded sequence of real numbers. By the Rising Sun Lemma, find an increasing or decreasing subsequence $\left\{x_{n_{k}}\right\}$. If $\left\{x_{n_{k}}\right\}$ is increasing, then by Theorem 3.1', $\lim x_{n_{k}}=\sup \left\{x_{n_{k}}: k \in \mathbf{N}\right\} \leq \sup \left\{x_{n}: n \in \mathbf{N}\right\}<\infty$, since the sequence is bounded; since the limit is finite, the subsequence converges. Similarly, if the subsequence is decreasing, it converges.

Figure 2: The unit ball around 0 in different norms on \mathbf{R}^{2} : standard $\|\cdot\|_{2},\|\cdot\|_{1}$ (L^{1} or taxi cab norm) and $\|\cdot\|_{\infty}\left(\right.$ sup norm or L^{∞} norm $)$.

Figure 3: All norms on \mathbf{R}^{n} are equivalent.

[^0]: ${ }^{1}$ From the law of cosines, $(v-w) \cdot(v-w)=v \cdot v+w \cdot w-2|v||w| \cos \theta$. On the other hand, $(v-w) \cdot(v-w)=$ $v \cdot v-2 v \cdot w+w \cdot w$, so $v \cdot w=|v||w| \cos \theta$.

[^1]: ${ }^{2}$ The statement of the theorem in de la Fuente (Theorem 10.8, p. 107) is correct, but the proof has a problem.

[^2]: ${ }^{3}$ Another, more useful notion of the distance between sets is the Hausdorff distance, given by $d(A, B)=$ $\max \left\{\sup _{a \in A} \inf _{b \in B} d(a, b), \sup _{b \in B} \inf _{a \in A} d(a, b)\right\}$.

[^3]: ${ }^{4}$ See the handout for this material.

