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Lecture 4–Thursday July 26, 2018

Section 2.4. Open and Closed Sets

Definition 1 Let (X, d) be a metric space. A set A ⊆ X is open if

∀x ∈ A ∃ε > 0 s.t. Bε(x) ⊆ A

A set C ⊆ X is closed if X \ C is open.

See Figure 1.

Example: (a, b) is open in the metric space E1 (R with the usual Euclidean metric). Given
x ∈ (a, b), a < x < b. Let

ε = min{x − a, b− x} > 0

Then

y ∈ Bε(x) ⇒ y ∈ (x− ε, x + ε)

⊆ (x − (x − a), x + (b− x))

= (a, b)

so Bε(x) ⊆ (a, b), so (a, b) is open.

Notice that ε depends on x; in particular, ε gets smaller as x nears the boundary of the
set.

Example: In E1, [a, b] is closed. R \ [a, b] = (−∞, a) ∪ (b,∞) is a union of two open sets,
which must be open.

Example: In the metric space [0, 1], [0, 1] is open. With [0, 1] as the underlying metric
space, Bε(0) = {x ∈ [0, 1] : |x− 0| < ε} = [0, ε).

Thus, openness and closedness depend on the underlying metric space as well as on the
set.

Example: Most sets are neither open nor closed. For example, in E1, [0, 1]∪ (2, 3) is neither
open nor closed.

Example: An open set may consist of a single point. For example, if X = N and d(m, n) =
|m − n|, then B1/2(1) = {m ∈ N : |m − 1| < 1/2} = {1}. Since 1 is the only element of the
set {1} and B1/2(1) = {1} ⊆ {1}, the set {1} is open.

Example: In any metric space (X, d) both ∅ and X are open, and both ∅ and X are closed.
To see that ∅ is open, note that the statement

∀x ∈ ∅ ∃ε > 0 Bε(x) ⊆ ∅
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is vacuously true since there aren’t any x ∈ ∅. To see that X is open, note that since Bε(x)
is by definition {z ∈ X : d(z, x) < ε}, it is trivially contained in X. Since ∅ is open, X is
closed; since X is open, ∅ is closed.

Example: Open balls are open sets. Suppose y ∈ Bε(x). Then d(x, y) < ε. Let δ =
ε − d(x, y) > 0. If d(z, y) < δ, then

d(z, x) ≤ d(z, y) + d(y, x)

< δ + d(x, y)

= ε − d(x, y) + d(x, y)

= ε

so Bδ(y) ⊆ Bε(x), so Bε(x) is open.

Theorem 2 (Thm. 4.2) Let (X, d) be a metric space. Then

1. ∅ and X are both open, and both closed.

2. The union of an arbitrary (finite, countable, or uncountable) collection of open sets is
open.

3. The intersection of a finite collection of open sets is open.

Proof:

1. We have already shown this.

2. Suppose {Aλ}λ∈Λ is a collection of open sets.

x ∈
⋃

λ∈Λ

Aλ ⇒ ∃λ0 ∈ Λ s.t. x ∈ Aλ0

⇒ ∃ε > 0 s.t. Bε(x) ⊆ Aλ0
⊆

⋃

λ∈Λ

Aλ

so ∪λ∈ΛAλ is open.

3. Suppose A1, . . . , An ⊆ X are open sets. If x ∈ ∩n
i=1Ai, then

x ∈ A1, x ∈ A2, . . . , x ∈ An

so
∃ε1 > 0, . . . , εn > 0 s.t. Bε1

(x) ⊆ A1, . . . , Bεn
(x) ⊆ An

Let
ε = min{ε1, . . . , εn} > 0
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(Note this is where we need the fact that we are taking a finite intersection. The
infimum of an infinite set of positive numbers could be zero. And the intersection of
an infinite collection of open sets need not be open.)

Then
Bε(x) ⊆ Bε1

(x) ⊆ A1, . . . , Bε(x) ⊆ Bεn
(x) ⊆ An

so

Bε(x) ⊆
n
⋂

i=1

Ai

which proves that ∩n
i=1Ai is open.

Definition 3 • The interior of A, denoted intA, is the largest open set contained in A
(the union of all open sets contained in A).

• The closure of A, denoted Ā, is the smallest closed set containing A (the intersection
of all closed sets containing A)

• The exterior of A, denoted extA, is the largest open set contained in X \ A.

• The boundary of A, denoted ∂A = (X \ A) ∩ Ā

Example: Let A = [0, 1] ∪ (2, 3). Then

intA = (0, 1) ∪ (2, 3)

Ā = [0, 1] ∪ [2, 3]

extA = int (X \ A)

= (−∞, 0) ∪ (1, 2) ∪ (3, +∞)

∂A = (X \ A) ∩ Ā

= ((−∞, 0] ∪ [1, 2] ∪ [3, +∞)) ∩ ([0, 1] ∪ [2, 3])

= {0, 1, 2, 3}

Theorem 4 (Thm. 4.13) A set A in a metric space (X, d) is closed if and only if

{xn} ⊂ A, xn → x ∈ X ⇒ x ∈ A

Proof:1 Suppose A is closed. Then X \ A is open. Consider a convergent sequence xn →
x ∈ X, with xn ∈ A for all n. If x 6∈ A, x ∈ X \ A, so there is some ε > 0 such that
Bε(x) ⊆ X \ A. (See Figure 2.) Since xn → x, there exists N(ε) such that

n > N(ε) ⇒ xn ∈ Bε(x)

⇒ xn ∈ X \ A

⇒ xn 6∈ A

1This is different from the proof in de la Fuente: he puts the meat of the proof into Theorem 4.12
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contradiction. Therefore,
xn ⊂ A, xn → x ∈ X ⇒ x ∈ A

Conversely, suppose
{xn} ⊂ A, xn → x ∈ X ⇒ x ∈ A

We need to show that A is closed, i.e. X \ A is open. Suppose not, so X \ A is not open.
Then there exists x ∈ X \ A such that for every ε > 0,

Bε(x) 6⊆ X \ A

so there exists y ∈ Bε(x) such that y 6∈ X \ A. Then y ∈ A, hence

Bε(x) ∩ A 6= ∅

See Figure 3. Construct a sequence {xn} as follows: for each n, choose xn ∈ B 1

n

(x) ∩ A.

Given ε > 0, we can find N(ε) such that N(ε) > 1
ε

by the Archimedean Property, so
n > N(ε) ⇒ 1

n
< 1

N(ε)
< ε, so xn → x. Then {xn} ⊆ A, xn → x, so x ∈ A, contradiction.

Therefore, X \ A is open, so A is closed.

Section 2.5. Limits of Functions

Note: Read this section of de la Fuente on your own.

Note that we may have limx→a f(x) = y even though

• f is not defined at a; or

• f is defined at a but f(a) 6= y.

The existence and value of the limit depends on values of f near a but not at a.

Section 2.6. Continuity in Metric Spaces

Definition 5 Let (X, d) and (Y, ρ) be metric spaces. A function f : X → Y is continuous
at a point x0 ∈ X if ∀ε > 0 ∃δ(x0, ε) > 0 s.t. d(x, x0) < δ(x0, ε) ⇒ ρ(f(x), f(x0)) < ε.

f is continuous if it is continuous at every element of its domain.

Note that δ depends on x0 and ε.

This is a straightforward generalization of the definition of continuity in R. Continuity
at x0 requires:

• f(x0) is defined; and
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• either

– x0 is an isolated point of X, i.e. ∃ε > 0 s.t. Bε(x) = {x}; or

– limx→x0
f(x) exists and equals f(x0)

Suppose f : X → Y and A ⊆ Y . Define f−1(A) = {x ∈ X : f(x) ∈ A}.

Theorem 6 (Thm. 6.14) Let (X, d) and (Y, ρ) be metric spaces, and f : X → Y . Then f
is continuous if and only if

f−1(A) is open in X ∀A ⊆ Y s.t. A is open in Y

Proof:2 Suppose f is continuous. Given A ⊆ Y , A open, we must show that f−1(A) is open
in X. Suppose x0 ∈ f−1(A). Let y0 = f(x0) ∈ A. Since A is open, we can find ε > 0 such
that Bε(y0) ⊆ A. Since f is continuous, there exists δ > 0 such that

d(x, x0) < δ ⇒ ρ(f(x), f(x0)) < ε

⇒ f(x) ∈ Bε(y0)

⇒ f(x) ∈ A

⇒ x ∈ f−1(A)

so Bδ(x0) ⊆ f−1(A), so f−1(A) is open. (See Figure 4.)

Conversely, suppose

f−1(A) is open in X ∀A ⊆ Y s.t. A is open in Y

We need to show that f is continuous. Let x0 ∈ X, ε > 0. Let A = Bε(f(x0)). A is an open
ball, hence an open set, so f−1(A) is open in X. x0 ∈ f−1(A), so there exists δ > 0 such
that Bδ(x0) ⊆ f−1(A). (See Figure 5.)

d(x, x0) < δ ⇒ x ∈ Bδ(x0)

⇒ x ∈ f−1(A)

⇒ f(x) ∈ A

⇒ ρ(f(x), f(x0)) < ε

Thus, we have shown that f is continuous at x0; since x0 is an arbitrary point in X, f is
continuous.

Theorem 7 (Slightly weaker version of Thm. 6.10) Let (X, dX), (Y, dY ) and (Z, dZ)
be metric spaces. If f : X → Y and g : Y → Z are continuous, then g ◦ f : X → Z is
continuous.

2We give a direct proof; de la Fuente works via closed sets.
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Proof: Suppose A ⊆ Z is open. Since g is continuous, g−1(A) is open in Y ; since f is
continuous, f−1(g−1(A)) is open in X.

We claim that
f−1(g−1(A)) = (g ◦ f)−1(A)

Observe

x ∈ f−1(g−1(A)) ⇔ f(x) ∈ g−1(A)

⇔ g(f(x)) ∈ A

⇔ (g ◦ f)(x) ∈ A

⇔ x ∈ (g ◦ f)−1(A)

which establishes the claim. This shows that (g◦f)−1(A) is open in X, so g◦f is continuous.

Definition 8 [Uniform Continuity] Suppose f : (X, d) → (Y, ρ). f is uniformly continuous
if

∀ε > 0 ∃δ(ε) > 0 s.t. ∀x0 ∈ X, d(x, x0) < δ(ε) ⇒ ρ(f(x), f(x0)) < ε

Notice the important contrast with continuity: f is continuous means

∀x0 ∈ X, ε > 0 ∃δ(x0, ε) > 0 s.t. d(x, x0) < δ(x0, ε) ⇒ ρ(f(x), f(x0)) < ε

Example: Consider

f(x) =
1

x
, x ∈ (0, 1]

f is continuous (why?). We will show that f is not uniformly continuous. Fix ε > 0 and
x0 ∈ (0, 1]. If x = x0

1+εx0

, then

1 + εx0 > 1

x =
x0

1 + εx0
< x0

1

x
− 1

x0
> 0

|f(x) − f(x0)| =
∣

∣

∣

∣

1

x
− 1

x0

∣

∣

∣

∣

=
1

x
− 1

x0

=
1 + εx0

x0
− 1

x0

=
εx0

x0
= ε
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Thus, δ(x0, ε) must be chosen small enough so that

∣

∣

∣

∣

x0

1 + εx0
− x0

∣

∣

∣

∣

≥ δ(x0, ε)

δ(x0, ε) ≤ x0 −
x0

1 + εx0

=
ε(x0)

2

1 + εx0

< ε(x0)
2

which converges to zero as x0 → 0. (See Figure 6.) So there is no δ(ε) that will work for all
x0 ∈ (0, 1].

Example: If f : R → R and f ′(x) is defined and uniformly bounded on an interval [a, b],
then f(x) is uniformly continuous on [a, b]. However, even a function with an unbounded
derivative may be uniformly continuous. Consider

f(x) =
√

x, x ∈ [0, 1]

f is continuous (why?). We will show that f is uniformly continuous. Given ε > 0, let
δ = ε2. Then given any x0 ∈ [0, 1], |x − x0| < δ implies by the Fundamental Theorem of
Calculus

|f(x) − f(x0)| =

∣

∣

∣

∣

∣

∫ x

x0

1

2
√

t
dt

∣

∣

∣

∣

∣

≤
∫ |x−x0|

0

1

2
√

t
dt

=
√

|x − x0|
<

√
δ

=
√

ε2

= ε

Thus, f is uniformly continuous on [0, 1], even though f ′(x) → ∞ as x → 0.

Definition 9 Let X, Y be normed vector spaces, E ⊆ X. f : X → Y is Lipschitz on E if

∃K > 0 s.t. ‖f(x) − f(z)||Y ≤ K‖x − z‖X ∀x, z ∈ E

f is locally Lipschitz on E if

∀x0 ∈ E ∃ε > 0 s.t. f is Lipschitz on Bε(x0) ∩ E
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Remark: de la Fuente only defines Lipschitz and locally Lipschitz in the context of normed
vector spaces. The notions can also be defined analogously in metric spaces as follows: Let
(X, d) and (Y, ρ) be metric spaces, E ⊆ X. f : X → Y is Lipschitz on E if

∃K > 0 s.t. ρ(f(x), f(z)) ≤ Kd(x, z) ∀x, z ∈ E

Similarly, f is locally Lipschitz on E if

∀x0 ∈ E ∃ε > 0 s.t. f is Lipschitz on Bε(x0) ∩ E

Lipschitz continuity is stronger than either continuity or uniform continuity:

locally Lipschitz ⇒ continuous

Lipschitz ⇒ uniformly continuous

Every C1 function is locally Lipschitz. (Recall that a function f : Rm → Rn is said to
be C1 if all its first partial derivatives exist and are continuous.)

Definition 10 3 Let (X, d) and (Y, ρ) be metric spaces. A function f : X → Y is called a
homeomorphism if it is one-to-one, onto, continuous, and its inverse function is continuous.

Now suppose that f is a homeomorphism and U ⊂ X. Let g : Y → X be the inverse of
f , so g ◦ f : X → X is the identity on X, and f ◦ g : Y → Y is the identity on Y .

y ∈ g−1(U) ⇔ g(y) = f−1(y) ∈ U

⇔ y ∈ f(U)

U open in X ⇒ g−1(U) is open in (f(X), ρ)

⇒ f(U) is open in (f(X), ρ)

This says that (X, d) and
(

f(X), ρ|f(X)

)

are identical in terms of properties that can be
characterized solely in terms of open sets; such properties are called “topological properties.”

3This is the standard definition; de la Fuente instead omits the requirement that f be onto, and requires
that f−1 be continous on f(X). See the Corrections handout for a correction to Theorem 6.21
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Figure 1: A is open: for every x ∈ A there is some ε > 0 such that Bε(x) ⊆ A. B is not
open: for x depicted in the picture 6 ∃ε > 0 such that Bε(x) ⊆ B.
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