Economics 204 Summer/Fall 2018 Lecture 6–Monday July 30, 2018

Section 2.8. Compactness

Definition 1 A collection of sets

$$\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$$

in a metric space (X, d) is an open cover of A if U_{λ} is open for all $\lambda \in \Lambda$ and

$$\cup_{\lambda \in \Lambda} U_{\lambda} \supseteq A$$

Notice that Λ may be finite, countably infinite, or uncountable.

Definition 2 A set A in a metric space is *compact* if every open cover of A contains a finite subcover of A. In other words, if $\{U_{\lambda} : \lambda \in \Lambda\}$ is an open cover of A, there exist $n \in \mathbb{N}$ and $\lambda_1, \dots, \lambda_n \in \Lambda$ such that

$$A \subseteq U_{\lambda_1} \cup \dots \cup U_{\lambda_n}$$

It is important to understand what this definition does *not* say. In particular, it does not say "A has a finite open cover;" note that every set is contained in X, and X is open, so every set has a cover consisting of exactly one open set. Like the ε - δ definition of continuity, in which you are given an arbitrary $\varepsilon > 0$ and are challenged to specify an appropriate δ , here you are given an arbitrary open cover and challenged to specify a finite subcover of the given open cover.

Example: (0, 1] is not compact in \mathbf{E}^1 . To see this, let

$$\mathcal{U} = \left\{ U_m = \left(\frac{1}{m}, 2\right) : m \in \mathbf{N} \right\}$$

Then

$$\bigcup_{m\in\mathbf{N}}U_m=(0,2)\supset(0,1]$$

Given any finite subset $\{U_{m_1}, \ldots, U_{m_n}\}$ of \mathcal{U} , let

$$m = \max\{m_1, \ldots, m_n\}$$

Then

$$\bigcup_{i=1}^{n} U_{m_i} = U_m = \left(\frac{1}{m}, 2\right) \not\supseteq (0, 1]$$

so (0, 1] is not compact. See Figure 1.

Note that this argument does not work for [0, 1]. Given an open cover $\{U_{\lambda} : \lambda \in \Lambda\}$, there must be some $\lambda \in \Lambda$ such that $0 \in U_{\lambda}$, and therefore $U_{\lambda} \supseteq [0, \varepsilon)$ for some $\varepsilon > 0$, and a finite number of the U_m 's we used to cover (0, 1] would cover the interval $(\varepsilon, 1]$. This is not a proof that [0, 1] is compact, since we need to show that *every* open cover has a finite subcover, but it is suggestive, and we will soon see that [0, 1] is indeed compact.

Example: $[0,\infty)$ is closed but not compact. To see that $[0,\infty)$ is not compact, let

$$\mathcal{U} = \{U_m = (-1, m) : m \in \mathbf{N}\}$$

Given any finite subset

 $\{U_{m_1},\ldots,U_{m_n}\}$

of \mathcal{U} , let

 $m = \max\{m_1, \ldots, m_n\}$

Then

$$U_{m_1} \cup \dots \cup U_{m_n} = (-1, m) \not\supseteq [0, \infty)$$

See Figure 2.

Theorem 3 (Thm. 8.14) Every closed subset A of a compact metric space (X, d) is compact.

Proof: Let $\{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of A. In order to use the compactness of X, we need to produce an open cover of X. There are two ways to do this:

$$U'_{\lambda} = U_{\lambda} \cup (X \setminus A)$$

$$\Lambda' = \Lambda \cup \{\lambda_0\}, \ U_{\lambda_0} = X \setminus A$$

We choose the first path, and let

$$U'_{\lambda} = U_{\lambda} \cup (X \setminus A)$$

See Figures 3 and 4.

Since A is closed, $X \setminus A$ is open; since U_{λ} is open, so is U'_{λ} . Then $x \in X \Rightarrow x \in A$ or $x \in X \setminus A$. If $x \in A, \exists \lambda \in \Lambda$ s.t. $x \in U_{\lambda} \subseteq U'_{\lambda}$. If instead $x \in X \setminus A$, then $\forall \lambda \in \Lambda, x \in U'_{\lambda}$. Therefore, $X \subseteq \bigcup_{\lambda \in \Lambda} U'_{\lambda}$, so $\{U'_{\lambda} : \lambda \in \Lambda\}$ is an open cover of X.

Since X is compact,

$$\exists \lambda_1, \ldots, \lambda_n \in \Lambda \text{ s.t. } X \subseteq U'_{\lambda_1} \cup \cdots \cup U'_{\lambda_n}$$

Then

$$a \in A \implies a \in X$$

$$\implies a \in U'_{\lambda_i} \text{ for some } i$$

$$\implies a \in U_{\lambda_i} \cup (X \setminus A)$$

$$\implies a \in U_{\lambda_i}$$

 \mathbf{SO}

$$A \subseteq U_{\lambda_1} \cup \dots \cup U_{\lambda_n}$$

Thus A is compact. \blacksquare

As the second example above illustrates, a closed subset of a metric space need not be compact. The converse is always true, however.

Theorem 4 (Thm. 8.15) If A is a compact subset of the metric space (X, d), then A is closed.

Proof: Suppose by way of contradiction that A is not closed. Then $X \setminus A$ is not open, so we can find a point $x \in X \setminus A$ such that, for every $\varepsilon > 0$, $A \cap B_{\varepsilon}(x) \neq \emptyset$, and hence $A \cap B_{\varepsilon}[x] \neq \emptyset$. For $n \in \mathbf{N}$, let

$$U_n = X \setminus B_{1/n}[x]$$

See Figure 5. Each U_n is open, and

$$\bigcup_{n \in \mathbf{N}} U_n = X \setminus \{x\} \supseteq A$$

since $x \notin A$. Therefore, $\{U_n : n \in \mathbf{N}\}$ is an open cover for A. Since A is compact, there is a finite subcover $\{U_{n_1}, \ldots, U_{n_k}\}$. Let $n = \max\{n_1, \ldots, n_k\}$. Then

$$U_n = X \setminus B_{1/n}[x]$$

$$\supseteq X \setminus B_{1/n_j}[x] \ (j = 1, \dots, k)$$

$$U_n \supseteq \bigcup_{j=1}^k U_{n_j}$$

$$\supseteq A$$

But $A \cap B_{1/n}[x] \neq \emptyset$, so $A \not\subseteq X \setminus B_{1/n}[x] = U_n$. This is a contradiction, which proves that A is closed.

Next we look at a sequential notion of compactness.

Definition 5 A set A in a metric space (X, d) is *sequentially compact* if every sequence of elements of A contains a convergent subsequence whose limit lies in A.

This gives rise to a sequential characterization of compactness for metric spaces.

Theorem 6 (Thms. 8.5, 8.11) A set A in a metric space (X, d) is compact if and only if it is sequentially compact.

Proof: Suppose A is compact. We will show that A is sequentially compact. If not, we can find a sequence $\{x_n\}$ of elements of A such that no subsequence converges to any element of A. Recall that a is a cluster point of the sequence $\{x_n\}$ means that

$$\forall \varepsilon > 0 \ \{n : x_n \in B_{\varepsilon}(a)\}$$
 is infinite

and this is equivalent to the statement that there is a subsequence $\{x_{n_k}\}$ converging to a. Thus, no element $a \in A$ can be a cluster point for $\{x_n\}$, and hence

$$\forall a \in A \; \exists \varepsilon_a > 0 \text{ s.t. } \{n : x_n \in B_{\varepsilon_a}(a)\} \text{ is finite} \tag{1}$$

Then

 $\{B_{\varepsilon_a}(a): a \in A\}$

is an open cover of A (if A is uncountable, it will be an uncountable open cover). Since A is compact, there is a finite subcover

$$\left\{B_{\varepsilon_{a_1}}(a_1),\ldots,B_{\varepsilon_{a_m}}(a_m)\right\}$$

Then

$$\mathbf{N} = \{n : x_n \in A\}$$

$$\subseteq \{n : x_n \in (B_{\varepsilon_{a_1}}(a_1) \cup \dots \cup B_{\varepsilon_{a_m}}(a_m))\}$$

$$= \{n : x_n \in B_{\varepsilon_{a_1}}(a_1)\} \cup \dots \cup \{n : x_n \in B_{\varepsilon_{a_m}}(a_m)\}$$

so N is contained in a finite union of sets, each of which is finite by Equation (1). Thus, N must be finite, a contradiction which proves that A is sequentially compact.

For the converse, see de la Fuente. \blacksquare

Next we explore connections between compactness and notions of boundedness.

Definition 7 A set A in a metric space (X, d) is *totally bounded* if, for every $\varepsilon > 0$,

$$\exists x_1, \ldots, x_n \in A \text{ s.t. } A \subseteq \bigcup_{i=1}^n B_{\varepsilon}(x_i)$$

This is the standard definition; de la Fuente's definition is equivalent to this. See the comments in the *Corrections* handout for further discussions.

Example: Take A = [0, 1] with the Euclidean metric. Given $\varepsilon > 0$, let $n > \frac{1}{\varepsilon}$. Then we may take

$$x_1 = \frac{1}{n}, x_2 = \frac{2}{n}, \dots, x_{n-1} = \frac{n-1}{n}$$

Then $[0,1] \subset \bigcup_{k=1}^{n-1} B_{\varepsilon}(\frac{k}{n}).$

Example: Consider X = [0, 1] with the discrete metric

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

X is not totally bounded. To see this, take $\varepsilon = \frac{1}{2}$. Then for any x, $B_{\varepsilon}(x) = \{x\}$, so given any finite set x_1, \ldots, x_n ,

$$\bigcup_{i=1}^{n} B_{\varepsilon}(x_i) = \{x_1, \dots, x_n\} \not\supseteq [0, 1]$$

However, X is bounded because $X = B_2(0)$.

Note that any totally bounded set in a metric space (X, d) is also bounded. To see this, let $A \subset X$ be totally bounded. Then $\exists x_1, \ldots, x_n \in A$ such that $A \subset B_1(x_1) \cup \cdots \cup B_1(x_n)$. Let

$$M = 1 + d(x_1, x_2) + \dots + d(x_{n-1}, x_n)$$

Then $M < \infty$. Now fix $a \in A$. We claim $d(a, x_1) < M$. To see this, notice that there is some $n_a \in \{1, \ldots, n\}$ for which $a \in B_1(x_{n_a})$. Then

$$d(a, x_1) \leq d(a, x_{n_a}) + \sum_{k=1}^n d(x_k, x_{k+1}) \\ < 1 + \sum_{k=1}^n d(x_k, x_{k+1}) \\ = M$$

See also Figure 6.

Remark 8 Fix ε and consider the open cover

$$\mathcal{U}_{\varepsilon} = \{B_{\varepsilon}(a) : a \in A\}$$

If A is compact, then every open cover of A has a finite subcover; in particular, $\mathcal{U}_{\varepsilon}$ must have a finite subcover, but this just says that A is totally bounded.

Theorem 9 (Thm. 8.16) Let A be a subset of a metric space (X, d). Then A is compact if and only if A is complete and totally bounded.

Proof: Here is a sketch of the proof; see de la Fuente for details. Compact implies totally bounded (Remark 8). Suppose $\{x_n\}$ is a Cauchy sequence in A. Since A is compact, A is sequentially compact, hence $\{x_n\}$ has a convergent subsequence $x_{n_k} \to a \in A$. Since $\{x_n\}$ is Cauchy, $x_n \to a$ (why?), so A is complete.

Conversely, suppose A is complete and totally bounded. Let $\{x_n\}$ be a sequence in A. Because A is totally bounded, we can extract a Cauchy subsequence $\{x_{n_k}\}$ (why?). Because A is complete, $x_{n_k} \to a$ for some $a \in A$, which shows that A is sequentially compact and hence compact. \blacksquare

From lecture 5, we know that a subset of a complete metric space is complete if and only if it is closed. So for a complete metric space, we have the following alternative characterization of compactness.

Corollary 10 Let A be a subset of a complete metric space (X, d). Then A is compact if and only if it is closed and totally bounded.

Notice that by putting these results together we conclude that a compact subset of a metric space must be closed and bounded.

Example: [0, 1] is compact in \mathbf{E}^1 . To see this, note that \mathbf{E}^1 is complete, and $[0, 1] \subset \mathbf{E}^1$ is closed and totally bounded.

In \mathbb{R}^n we can simplify this characterization even further by the following extremely important results.

Theorem 11 (Thm. 8.19, Heine-Borel) If $A \subseteq \mathbf{E}^1$, then A is compact if and only if A is closed and bounded.

Proof: Let A be a closed, bounded subset of **R**. Then $A \subseteq [a, b]$ for some interval [a, b]. Let $\{x_n\}$ be a sequence of elements of [a, b]. By the Bolzano-Weierstrass Theorem, $\{x_n\}$ contains a convergent subsequence with limit $x \in \mathbf{R}$. Since [a, b] is closed, $x \in [a, b]$. Thus, we have shown that [a, b] is sequentially compact, hence compact. A is a closed subset of [a, b], hence A is compact.

Conversely, if A is compact, then A is closed and totally bounded, hence closed and bounded. \blacksquare

Theorem 12 (8.20, Heine-Borel) If $A \subseteq \mathbf{E}^n$, then A is compact if and only if A is closed and bounded.

Proof: See de la Fuente.∎

Example: The closed interval

 $[a,b] = \{x \in \mathbf{R}^n : a_i \le x_i \le b_i \text{ for each } i = 1, \dots, n\}$

is compact in \mathbf{E}^n for any $a, b \in \mathbf{R}^n$.

Next we study the implications of compactness for continuous functions, and derive a general version of the Extreme Value Theorem.

Theorem 13 (Thm. 8.21) Let (X, d) and (Y, ρ) be metric spaces. If $f : X \to Y$ is continuous and C is a compact subset of (X, d), then f(C) is compact in (Y, ρ) .

Proof: There is a proof in de la Fuente using sequential compactness. Here we give an alternative proof using directly the open cover definition of compactness:

Let $\{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of f(C). For each $c \in C$, $f(c) \in f(C)$ so $f(c) \in U_{\lambda_c}$ for some $\lambda_c \in \Lambda$, that is, $c \in f^{-1}(U_{\lambda_c})$. Thus the collection $\{f^{-1}(U_{\lambda}) : \lambda \in \Lambda\}$ is a cover of C; in addition, since f is continuous, each set $f^{-1}(U_{\lambda})$ is open in C, so $\{f^{-1}(U_{\lambda}) : \lambda \in \Lambda\}$ is an open cover of C. Since C is compact, there is a finite subcover

$$\left\{f^{-1}\left(U_{\lambda_{1}}\right),\ldots,f^{-1}\left(U_{\lambda_{n}}\right)\right\}$$

of C. Given $x \in f(C)$, there exists $c \in C$ such that f(c) = x, and $c \in f^{-1}(U_{\lambda_i})$ for some i, so $x \in U_{\lambda_i}$. Thus, $\{U_{\lambda_1}, \ldots, U_{\lambda_n}\}$ is a finite subcover of f(C), so f(C) is compact.

Corollary 14 (Thm. 8.22, Extreme Value Theorem) Let C be a compact set in a metric space (X, d), and suppose $f : C \to \mathbf{R}$ is continuous. Then f is bounded on C and attains its minimum and maximum on C.

Proof: Since C is compact and f is continuous, $f(C) \subset \mathbf{R}$ is compact, hence closed and bounded. Let $M = \sup f(C)$; $M < \infty$. Then $\forall m > 0$ there exists $y_m \in f(C)$ such that

$$M - \frac{1}{m} \le y_m \le M$$

So $y_m \to M$ and $\{y_m\} \subseteq f(C)$. Since f(C) is closed, $M \in f(C)$, i.e. there exists $c \in C$ such that $f(c) = M = \sup f(C)$, so f attains its maximum at c. The proof for the minimum is similar.

Theorem 15 (Thm. 8.24) Let (X, d) and (Y, ρ) be metric spaces, C a compact subset of X, and $f: C \to Y$ a continuous function. Then f is uniformly continuous on C.

Proof: Fix $\varepsilon > 0$. We ignore X and consider f as defined on the metric space (C, d). Given $c \in C$, find $\delta(c) > 0$ such that

$$x \in C, \ d(x,c) < 2\delta(c) \Rightarrow \rho(f(x), f(c)) < \frac{\varepsilon}{2}$$

Let

$$U_c = B_{\delta(c)}(c)$$

Then

$$\{U_c : c \in C\}$$

is an open cover of C. Since C is compact, there is a finite subcover

$$\{U_{c_1},\ldots,U_{c_n}\}$$

Let

$$\delta = \min\{\delta(c_1), \ldots, \delta(c_n)\}\$$

Given $x, y \in C$ with $d(x, y) < \delta$, note that $x \in U_{c_i}$ for some $i \in \{1, \ldots, n\}$, so $d(x, c_i) < \delta(c_i)$.

$$d(y, c_i) \leq d(y, x) + d(x, c_i)$$

$$< \delta + \delta(c_i)$$

$$\leq \delta(c_i) + \delta(c_i)$$

$$= 2\delta(c_i)$$

$$\rho(f(x), f(y)) \leq \rho(f(x), f(c_i)) + \rho(f(c_i), f(y))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

which proves that f is uniformly continuous. \blacksquare

 \mathbf{SO}

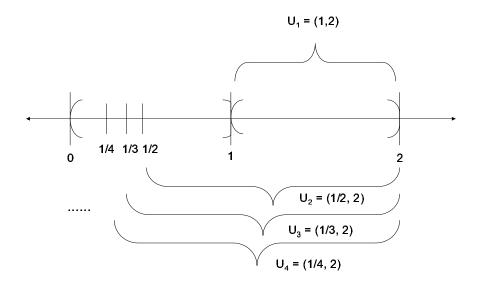


Figure 1: (0, 1] is not compact: $\{U_n : n \in \mathbf{N}\}$ covers (0, 1] but has no finite subcover.

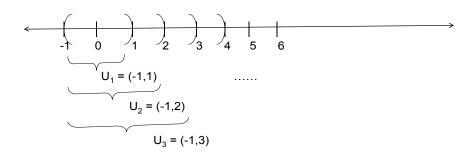


Figure 2: $[0,\infty)$ is closed but not compact: $\{U_n : n \in \mathbb{N}\}$ covers $[0,\infty)$ but has no finite subcover.

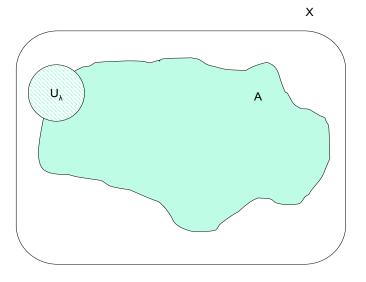


Figure 3: $\{U_{\lambda} : \lambda \in \Lambda\}$ is an open cover of A.

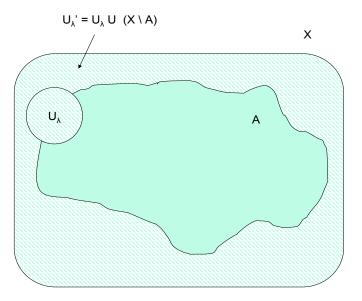


Figure 4: $\{U'_{\lambda} : \lambda \in \Lambda\}$ is an open cover of X with $U'_{\lambda} = U_{\lambda} \cup (X \setminus A)$.

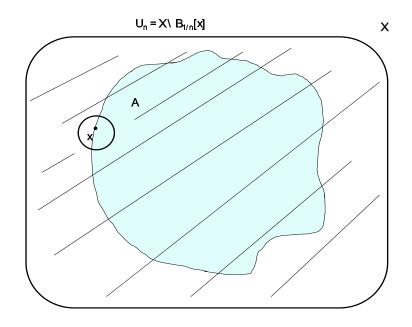


Figure 5: $\{U_n : n \in \mathbf{N}\}$ with $U_n = X \setminus B_{\frac{1}{n}}[x]$ is an open cover of A.

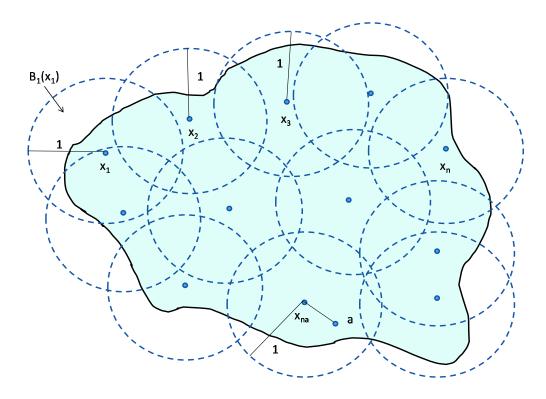


Figure 6: Every totally bounded subset of a metric space is bounded.