Chapter 3. Linear Algebra

Section 3.1. Bases

Definition 1 Let X be a vector space over a field F. A linear combination of $x_1, \ldots, x_n \in X$ is a vector of the form

$$y = \sum_{i=1}^{n} \alpha_i x_i$$

where $\alpha_1, \ldots, \alpha_n \in F$.

α_i is the coefficient of x_i in the linear combination.

If $V \subseteq X$, the span of V, denoted $\text{span} V$, is the set of all linear combinations of elements of V. The set $V \subseteq X$ spans X if $\text{span} V = X$.

Definition 2 A set $V \subseteq X$ is linearly dependent if there exist $v_1, \ldots, v_n \in V$ and $\alpha_1, \ldots, \alpha_n \in F$ not all zero such that

$$\sum_{i=1}^{n} \alpha_i v_i = 0$$

A set $V \subseteq X$ is linearly independent if it is not linearly dependent.

Thus $V \subseteq X$ is linearly independent if and only if

$$\sum_{i=1}^{n} \alpha_i v_i = 0, \ v_i \in V \ \forall i \Rightarrow \alpha_i = 0 \ \forall i$$

Definition 3 A Hamel basis (often just called a basis) of a vector space X is a linearly independent set of vectors in X that spans X.

Example: $\{(1,0), (0,1)\}$ is a basis for \mathbb{R}^2 (this is the standard basis).

$\{(1,1), (-1,1)\}$ is another basis for \mathbb{R}^2: Suppose

$$(x, y) = \alpha (1,1) + \beta (-1,1) \text{ for some } \alpha, \beta \in \mathbb{R}$$

$$x = \alpha - \beta$$

$$y = \alpha + \beta$$

$$x + y = 2\alpha$$

$$\Rightarrow \alpha = \frac{x + y}{2}$$
\[y - x = 2\beta \]
\[\Rightarrow \beta = \frac{y - x}{2} \]
\[\Rightarrow (x, y) = \frac{x + y}{2} (1, 1) + \frac{y - x}{2} (-1, 1) \]

Since \((x, y)\) is an arbitrary element of \(\mathbb{R}^2\), \(\{(1, 1), (-1, 1)\}\) spans \(\mathbb{R}^2\). If \((x, y) = (0, 0)\),

\[\alpha = \frac{0 + 0}{2} = 0, \quad \beta = \frac{0 - 0}{2} = 0 \]

so the coefficients are all zero, so \(\{(1, 1), (-1, 1)\}\) is linearly independent. Since it is linearly independent and spans \(\mathbb{R}^2\), it is a basis.

Example: \(\{(1, 0, 0), (0, 1, 0)\}\) is not a basis of \(\mathbb{R}^3\), because it does not span \(\mathbb{R}^3\).

Example: \(\{(1, 0), (0, 1), (1, 1)\}\) is not a basis for \(\mathbb{R}^2\).

\[1(1, 0) + 1(0, 1) + (-1)(1, 1) = (0, 0) \]

so the set is not linearly independent.

Theorem 4 (Thm. 1.2') \(^1\) Let \(V\) be a Hamel basis for \(X\). Then every vector \(x \in X\) has a unique representation as a linear combination of a finite number of elements of \(V\) (with all coefficients nonzero).\(^2\)

Proof: Let \(x \in X\). Since \(V\) spans \(X\), we can write

\[x = \sum_{s \in S_1} \alpha_s v_s \]

where \(S_1\) is finite, \(\alpha_s \in F, \alpha_s \neq 0\), and \(v_s \in V\) for each \(s \in S_1\). Now, suppose

\[x = \sum_{s \in S_1} \alpha_s v_s = \sum_{s \in S_2} \beta_s v_s \]

where \(S_2\) is finite, \(\beta_s \in F, \beta_s \neq 0\), and \(v_s \in V\) for each \(s \in S_2\).

Let \(S = S_1 \cup S_2\), and define

\[\alpha_s = 0 \quad \text{for} \quad s \in S_2 \setminus S_1 \]
\[\beta_s = 0 \quad \text{for} \quad s \in S_1 \setminus S_2 \]

Then

\[0 = x - x \]
\[= \sum_{s \in S_1} \alpha_s v_s - \sum_{s \in S_2} \beta_s v_s \]
\[= \sum_{s \in S} \alpha_s v_s - \sum_{s \in S} \beta_s v_s \]
\[= \sum_{s \in S} (\alpha_s - \beta_s) v_s \]

\(^1\)See Corrections handout.
\(^2\)The unique representation of \(0\) is \(0 = \sum_{i \in \emptyset} \alpha_i b_i\).
Since V is linearly independent, we must have $\alpha_s - \beta_s = 0$, so $\alpha_s = \beta_s$, for all $s \in S$.

\[
s \in S_1 \iff \alpha_s \neq 0 \iff \beta_s \neq 0 \iff s \in S_2
\]
so $S_1 = S_2$ and $\alpha_s = \beta_s$ for $s \in S_1 = S_2$, so the representation is unique. ■

Theorem 5 Every vector space has a Hamel basis.

Proof: The proof uses the Axiom of Choice. Indeed, the theorem is equivalent to the Axiom of Choice. ■

A closely related result, from which you can derive the previous result, shows that any linearly independent set V in a vector space X can be extended to a basis of X.

Theorem 6 If X is a vector space and $V \subseteq X$ is linearly independent, then there exists a linearly independent set $W \subseteq X$ such that

\[
V \subseteq W \subseteq \text{span } W = X
\]

Theorem 7 Any two Hamel bases of a vector space X have the same cardinality (are numerically equivalent).

Proof: The proof depends on the so-called Exchange Lemma, whose idea we sketch. Suppose that $V = \{v_\lambda : \lambda \in \Lambda\}$ and $W = \{w_\gamma : \gamma \in \Gamma\}$ are Hamel bases of X. Remove one vector v_{λ_0} from V, so that it no longer spans (if it did still span, then v_{λ_0} would be a linear combination of other elements of V, and V would not be linearly independent). If $w_\gamma \in \text{span } (V \setminus \{v_{\lambda_0}\})$ for every $\gamma \in \Gamma$, then since W spans, $V \setminus \{v_{\lambda_0}\}$ would also span, contradiction. Thus, we can choose $\gamma_0 \in \Gamma$ such that

\[
w_{\gamma_0} \notin \text{span } (V \setminus \{v_{\lambda_0}\})
\]
Because $w_{\gamma_0} \in \text{span } V$, we can write

\[
w_{\gamma_0} = \sum_{i=0}^{n} \alpha_i v_{\lambda_i}
\]
where α_0, the coefficient of v_{λ_0}, is not zero (if it were, then we would have $w_{\gamma_0} \in \text{span } (V \setminus \{v_{\lambda_0}\})$). Since $\alpha_0 \neq 0$, we can solve for v_{λ_0} as a linear combination of w_{γ_0} and $v_{\lambda_1}, \ldots, v_{\lambda_n}$, so

\[
\text{span } ((V \setminus \{v_{\lambda_0}\}) \cup \{w_{\gamma_0}\}) \
\supseteq \text{span } V
= X
\]
so

\[
((V \setminus \{v_{\lambda_0}\}) \cup \{w_{\gamma_0}\})
\]
spans X. From the fact that $w_{\gamma_0} \not\in \text{span} \left(V \setminus \{v_{\lambda_0}\}\right)$ one can show that
\[
(V \setminus \{v_{\lambda_0}\}) \cup \{w_{\gamma_0}\}
\]
is linearly independent, so it is a basis of X. Repeat this process to exchange every element of V with an element of W (when V is infinite, this is done by a process called transfinite induction). At the end, we obtain a bijection from V to W, so that V and W are numerically equivalent. ■

Definition 8 The *dimension* of a vector space X, denoted $\dim X$, is the cardinality of any basis of X.

Definition 9 Let X be a vector space. If $\dim X = n$ for some $n \in \mathbb{N}$, then X is *finite-dimensional*. Otherwise, X is *infinite-dimensional*.

Recall that for $V \subseteq X$, $|V|$ denotes the cardinality of the set V. ³

Example: The set of all $m \times n$ real-valued matrices is a vector space over \mathbb{R}. A basis is given by
\[
\{E_{ij} : 1 \leq i \leq m, 1 \leq j \leq n\}
\]
where
\[
(E_{ij})_{k\ell} = \begin{cases}
1 & \text{if } k = i \text{ and } \ell = j \\
0 & \text{otherwise}.
\end{cases}
\]
The dimension of the vector space of $m \times n$ matrices is mn.

Theorem 10 (Thm. 1.4) Suppose $\dim X = n \in \mathbb{N}$. If $V \subseteq X$ and $|V| > n$, then V is linearly dependent.

Proof: If not, so V is linearly independent, then there is a basis W for X that contains V. But $|W| \geq |V| > n = \dim X$, a contradiction. ■

Theorem 11 (Thm. 1.5’) Suppose $\dim X = n \in \mathbb{N}$ and $V \subseteq X$, $|V| = n$.

- If V is linearly independent, then V spans X, so V is a Hamel basis.
- If V spans X, then V is linearly independent, so V is a Hamel basis.

Proof: (Sketch)

³See the Appendix to Lecture 2 for some facts about cardinality.
• If V does not span X, then there is a basis W for X that contains V as a proper subset. Then $|W| > |V| = n = \text{dim } X$, a contradiction.

• If V is not linearly independent, then there is a proper subset V' of V that is linearly independent and for which $\text{span } V' = \text{span } V = X$. But then $|V'| < |V| = n = \text{dim } X$, a contradiction.

Note: Read the material on Affine Spaces on your own.

Section 3.2. Linear Transformations

Definition 12 Let X and Y be two vector spaces over the field F. We say $T : X \to Y$ is a linear transformation if

$$T(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 T(x_1) + \alpha_2 T(x_2) \quad \forall x_1, x_2 \in X, \alpha_1, \alpha_2 \in F$$

Let $L(X, Y)$ denote the set of all linear transformations from X to Y.

Theorem 13 $L(X, Y)$ is a vector space over F.

The hard part of proving this theorem is figuring out what you are being asked to prove. Once you figure that out, this is completely trivial, although writing out a complete proof that checks all the vector space axioms is rather tedious. The key is to define scalar multiplication and vector addition, and show that a linear combination of linear transformations is a linear transformation.

Proof: First, define linear combinations in $L(X, Y)$ as follows. For $T_1, T_2 \in L(X, Y)$ and $\alpha, \beta \in F$, define $\alpha T_1 + \beta T_2$ by

$$(\alpha T_1 + \beta T_2)(x) = \alpha T_1(x) + \beta T_2(x)$$

We need to show that $\alpha T_1 + \beta T_2 \in L(X, Y)$.

$$(\alpha T_1 + \beta T_2)(\gamma x_1 + \delta x_2)$$

$$= \alpha T_1(\gamma x_1 + \delta x_2) + \beta T_2(\gamma x_1 + \delta x_2)$$

$$= \alpha (\gamma T_1(x_1) + \delta T_1(x_2)) + \beta (\gamma T_2(x_1) + \delta T_2(x_2))$$

$$= \gamma (\alpha T_1(x_1) + \beta T_2(x_1)) + \delta (\alpha T_1(x_2) + \beta T_2(x_2))$$

$$= \gamma (\alpha T_1 + \beta T_2)(x_1) + \delta (\alpha T_1 + \beta T_2)(x_2)$$

so $\alpha T_1 + \beta T_2 \in L(X, Y)$.

The rest of the proof involves straightforward checking of the vector space axioms. ■
Composition of Linear Transformations

Given \(R \in L(X, Y) \) and \(S \in L(Y, Z) \), \(S \circ R : X \to Z \). We will show that \(S \circ R \in L(X, Z) \), that is, the composition of two linear transformations is also linear.

\[
(S \circ R)(\alpha x_1 + \beta x_2) = S(R(\alpha x_1 + \beta x_2))
= S(\alpha R(x_1) + \beta R(x_2))
= \alpha S(R(x_1)) + \beta S(R(x_2))
= \alpha (S \circ R)(x_1) + \beta (S \circ R)(x_2)
\]

so \(S \circ R \in L(X, Z) \).

Definition 14 Let \(T \in L(X, Y) \).

- The *image* of \(T \) is \(\text{Im} \, T = T(X) \)
- The *kernel* of \(T \) is \(\ker T = \{ x \in X : T(x) = 0 \} \)
- The *rank* of \(T \) is \(\text{Rank} \, T = \dim(\text{Im} \, T) \)

Theorem 15 (Thms. 2.9, 2.7, 2.6: The Rank-Nullity Theorem) Let \(X \) be a finite-dimensional vector space and \(T \in L(X, Y) \). Then \(\text{Im} \, T \) and \(\ker T \) are vector subspaces of \(Y \) and \(X \) respectively, and

\[
\dim X = \dim \ker T + \text{Rank} \, T
\]

Proof: (Sketch) First show that \(\text{Im} \, T \) is a vector subspace of \(Y \) and \(\ker T \) is a vector subspace of \(X \) (exercise).

Then let \(V = \{ v_1, \ldots, v_k \} \) be a basis for \(\ker T \) (note that \(\ker T \subseteq X \) so \(\dim \ker T \leq \dim X = n \)). If \(\ker T = \{0\} \), take \(k = 0 \) so \(V = \emptyset \). Extend \(V \) to a basis \(W \) for \(X \) with \(W = \{ v_1, \ldots, v_k, w_1, \ldots, w_r \} \). Then \(\{ T(w_1), \ldots, T(w_r) \} \) is a basis for \(\text{Im} \, T \) (do this as an exercise).

By definition, \(\dim \ker T = k \) and \(\dim \text{Im} \, T = r \). Since \(W \) is a basis for \(X \), \(k + r = |W| = \dim X \), that is,

\[
\dim X = \dim \ker T + \text{Rank} \, T
\]

Theorem 16 (Thm. 2.13) \(T \in L(X, Y) \) is one-to-one if and only if \(\ker T = \{0\} \).

Proof: Suppose \(T \) is one-to-one. Suppose \(x \in \ker T \). Then \(T(x) = 0 \). But since \(T \) is linear, \(T(0) = T(0 \cdot 0) = 0 \cdot T(0) = 0 \). Since \(T \) is one-to-one, \(x = 0 \), so \(\ker T = \{0\} \).
Conversely, suppose that \(\ker T = \{0\} \). Suppose \(T(x_1) = T(x_2) \). Then
\[
T(x_1 - x_2) = T(x_1) - T(x_2) = 0
\]
which says \(x_1 - x_2 \in \ker T \), so \(x_1 - x_2 = 0 \), or \(x_1 = x_2 \). Thus, \(T \) is one-to-one. ■

Definition 17 \(T \in L(X,Y) \) is invertible if there is a function \(S : Y \to X \) such that
\[
S(T(x)) = x \quad \forall x \in X \\
T(S(y)) = y \quad \forall y \in Y
\]
In other words \(S \circ T = id_X \) and \(T \circ S = id_Y \), where \(id \) denotes the identity map. In this case denote \(S \) by \(T^{-1} \).

Note that \(T \) is invertible if and only if it is one-to-one and onto. This is just the condition for the existence of an inverse function. The linearity of the inverse follows from the linearity of \(T \).

Theorem 18 (Thm. 2.11) If \(T \in L(X,Y) \) is invertible, then \(T^{-1} \in L(Y,X) \), i.e. \(T^{-1} \) is linear.

Proof: Suppose \(\alpha, \beta \in F \) and \(v, w \in Y \). Since \(T \) is invertible, there exists unique \(v', w' \in X \) such that
\[
T(v') = v \quad T^{-1}(v) = v' \\
T(w') = w \quad T^{-1}(w) = w'
\]
Then
\[
T^{-1}(\alpha v + \beta w) = T^{-1}(\alpha T(v') + \beta T(w')) \\
= T^{-1}(T(\alpha v' + \beta w')) \\
= \alpha v' + \beta w' \\
= \alpha T^{-1}(v) + \beta T^{-1}(w)
\]
so \(T^{-1} \in L(Y,X) \). ■

Theorem 19 (Thm. 3.2) Let \(X, Y \) be two vector spaces over the same field \(F \), and let \(V = \{v_\lambda : \lambda \in \Lambda\} \) be a basis for \(X \). Then a linear transformation \(T \in L(X,Y) \) is completely determined by its values on \(V \), that is:

1. Given any set \(\{y_\lambda : \lambda \in \Lambda\} \subseteq Y \), \(\exists T \in L(X,Y) \) s.t.
\[
T(v_\lambda) = y_\lambda \quad \forall \lambda \in \Lambda
\]
2. If \(S, T \in L(X,Y) \) and \(S(v_\lambda) = T(v_\lambda) \) for all \(\lambda \in \Lambda \), then \(S = T \).
Proof:

1. If \(x \in X \), \(x \) has a unique representation of the form

\[
x = \sum_{i=1}^{n} \alpha_i v_{\lambda_i}
\]

with \(\alpha_i \neq 0 \ \forall i = 1, \ldots, n \).

(Recall that if \(x = 0 \), then \(n = 0 \).) Define

\[
T(x) = \sum_{i=1}^{n} \alpha_i y_{\lambda_i}
\]

Then \(T(x) \in Y \). The verification that \(T \) is linear is left as an exercise.

2. Suppose \(S(v_\lambda) = T(v_\lambda) \) for all \(\lambda \in \Lambda \). Given \(x \in X \),

\[
S(x) = S \left(\sum_{i=1}^{n} \alpha_i v_{\lambda_i} \right) = \sum_{i=1}^{n} \alpha_i S(v_{\lambda_i}) = \sum_{i=1}^{n} \alpha_i T(v_{\lambda_i}) = T \left(\sum_{i=1}^{n} \alpha_i v_{\lambda_i} \right) = T(x)
\]

so \(S = T \).

Section 3.3. Isomorphisms

Definition 20 Two vector spaces \(X, Y \) over a field \(F \) are isomorphic if there is an invertible \(T \in L(X,Y) \).

\(T \in L(X,Y) \) is an isomorphism if it is invertible (one-to-one and onto).

Isomorphic vector spaces are essentially indistinguishable as vector spaces.

Theorem 21 (Thm. 3.3) Two vector spaces \(X, Y \) over the same field are isomorphic if and only if \(\dim X = \dim Y \).
Proof: Suppose \(X, Y \) are isomorphic, and let \(T \in L(X, Y) \) be an isomorphism. Let
\[
U = \{ u_\lambda : \lambda \in \Lambda \}
\]
be a basis of \(X \), and let
\[
v_\lambda = T(u_\lambda), \quad V = \{ v_\lambda : \lambda \in \Lambda \}
\]
Since \(T \) is one-to-one, \(U \) and \(V \) have the same cardinality. If \(y \in Y \), then there exists \(x \in X \) such that
\[
y = T(x) = T \left(\sum_{i=1}^{n} \alpha_i u_{\lambda_i} \right)
\]
\[
= \sum_{i=1}^{n} \alpha_i T(u_{\lambda_i})
\]
\[
= \sum_{i=1}^{n} \alpha_i v_{\lambda_i}
\]
which shows that \(V \) spans \(Y \). To see that \(V \) is linearly independent, suppose
\[
0 = \sum_{i=1}^{m} \beta_i v_{\lambda_i} = \sum_{i=1}^{m} \beta_i T(u_{\lambda_i}) = T \left(\sum_{i=1}^{m} \beta_i u_{\lambda_i} \right)
\]
Since \(T \) is one-to-one, \(\ker T = \{0\} \), so
\[
\sum_{i=1}^{m} \beta_i u_{\lambda_i} = 0
\]
Since \(U \) is a basis, we have \(\beta_1 = \cdots = \beta_m = 0 \), so \(V \) is linearly independent. Thus, \(V \) is a basis of \(Y \); since \(U \) and \(V \) are numerically equivalent, \(\dim X = \dim Y \).

Now suppose \(\dim X = \dim Y \). Let
\[
U = \{ u_\lambda : \lambda \in \Lambda \} \quad \text{and} \quad V = \{ v_\lambda : \lambda \in \Lambda \}
\]
be bases of \(X \) and \(Y \); note we can use the same index set \(\Lambda \) for both because \(\dim X = \dim Y \). By Theorem 3.2, there is a unique \(T \in L(X, Y) \) such that \(T(u_\lambda) = v_\lambda \) for all \(\lambda \in \Lambda \). If \(T(x) = 0 \), then
\[
0 = T(x) = T \left(\sum_{i=1}^{n} \alpha_i u_{\lambda_i} \right)
\]
\[
\begin{align*}
\sum_{i=1}^{n} \alpha_{i} T(u_{\lambda_{i}}) &= \sum_{i=1}^{n} \alpha_{i} v_{\lambda_{i}} \\
\Rightarrow \alpha_{1} = \cdots = \alpha_{n} &= 0 \text{ since } V \text{ is a basis} \\
\Rightarrow x &= 0 \\
\Rightarrow \ker T &= \{0\} \\
\Rightarrow T \text{ is one-to-one}
\end{align*}
\]

If \(y \in Y \), write \(y = \sum_{i=1}^{m} \beta_{i} v_{\lambda_{i}} \). Let
\[
x = \sum_{i=1}^{m} \beta_{i} u_{\lambda_{i}}
\]

Then
\[
\begin{align*}
T(x) &= T \left(\sum_{i=1}^{m} \beta_{i} u_{\lambda_{i}} \right) \\
&= \sum_{i=1}^{m} \beta_{i} T(u_{\lambda_{i}}) \\
&= \sum_{i=1}^{m} \beta_{i} v_{\lambda_{i}} \\
&= y
\end{align*}
\]

so \(T \) is onto, hence \(T \) is an isomorphism and \(X, Y \) are isomorphic. \(\blacksquare \)