Econ 204 - Problem Set 3

Due Friday August 3, $2018{ }^{1}$

1. Let (X, d) be a metric space:
(a) Let $y \in X$ be given. Define the function $d_{y}: X \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
d_{y}(x)=d(x, y) \tag{1}
\end{equation*}
$$

Show that d_{y} is a continuous function on X for each $y \in X$.
(b) Let A be a subset of X and $x \in X$. Recall that the distance from the point x to the set A is defined as:

$$
\begin{equation*}
\rho(x, A)=\inf \{d(x, a): a \in A\} \tag{2}
\end{equation*}
$$

Show that the closure of set A is the set of all points with zero distance to A, that is:

$$
\begin{equation*}
\bar{A}=\{x \in X: \rho(x, A)=0\} \tag{3}
\end{equation*}
$$

(c) Now let $A \subset X$ be a compact subset. Show that $\rho(x, A)=d(x, a)$ for some $a \in A$.
2. Let x and y be moving objects in \mathbb{R}. Time is discrete, namely $t \in \mathbb{Z}_{+}:=\{0\} \cup \mathbb{N}$. In addition, $\beta>1$ is a fixed parameter. For $a, b \in \mathbb{R}$, let $\rho(a, b):=|a-b| \wedge 1$ (as mentioned in the section, the symbol \wedge is sometimes used to refer to the minimum of two elements). Then for any $x, y \in \mathbb{R}^{\omega}{ }^{2}$, let

$$
\begin{equation*}
d(x, y)=\sum_{t \in \mathbb{Z}_{+}} \beta^{-t} \rho\left(x_{t}, y_{t}\right) \tag{4}
\end{equation*}
$$

denotes the distance between $x=\left(x_{0}, x_{1}, \ldots\right)$ and $y=\left(y_{0}, y_{1}, \ldots\right)$, where x_{t} is the position of x at time t on the real line.
(a) Show that d is a metric on \mathbb{R}^{ω}.
(b) Show that $\left(\mathbb{R}^{\omega}, d\right)$ is a bounded metric space.
(c) Is $[0,1]^{\omega}$ an open or closed subset of \mathbb{R}^{ω} ? (in either case present a proof)
(d) Is $\left(\mathbb{R}^{\omega}, d\right)$ a complete metric space? (prove if yes, otherwise provide a counterexample)
(e) Is $[0,1]^{\omega}$ a totally bounded subset under d ? Is it a compact subset?
3. Let D be the space of all functions $f:[0,1] \rightarrow \mathbb{R}$ such that f is continuous and such that for some $\varepsilon>0, f:(-\varepsilon, 1+\varepsilon) \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}:(-\varepsilon, 1+\varepsilon) \rightarrow \mathbb{R}$ is

[^0]continuous. For each $f \in D$, let
\[

$$
\begin{equation*}
\|f\|_{\infty}=\sup \{|f(t)|: t \in[0,1]\} \quad \text { and } \quad\left\|f^{\prime}\right\|_{\infty}=\sup \left\{\left|f^{\prime}(t)\right|: t \in[0,1]\right\} . \tag{5}
\end{equation*}
$$

\]

Define the function $\|\cdot\|: D \rightarrow \mathbb{R}_{+}$by

$$
\begin{equation*}
\|f\|:=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty} \tag{6}
\end{equation*}
$$

(a) Show that $(D,\|\cdot\|)$ is a normed vector space.
(b) Define the function $J: D \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
J(f)=\int_{0}^{1} c(x)\left(f^{\prime}(x)\right)^{2} \mathrm{~d} x \tag{7}
\end{equation*}
$$

where $c:[0,1] \rightarrow \mathbb{R}_{+}$is a nonnegative integrable function (its integral over $[0,1]$ is finite). Prove that J is continuous.
4. Let X be a connected space. Let \mathcal{R} be an equivalence relation on X such that for each $x \in X$, there exists an open set \mathcal{O}_{x} containing x such that $\mathcal{O}_{x} \subset[x]$. Show that \mathcal{R} has only one (distinct) equivalence class.
5. Define the correspondence $\Gamma:[0,1] \rightarrow 2^{[0,1]}$ by:

$$
\Gamma(x)=\left\{\begin{array}{ll}
{[0,1] \cap \mathbb{Q}} & \text { if } x \in[0,1] \backslash \mathbb{Q} \tag{8}\\
{[0,1] \backslash \mathbb{Q}} & \text { if } x \in[0,1] \cap \mathbb{Q}
\end{array} .\right.
$$

Show that Γ is not continuous, but it is lower-hemicontinuous. Is Γ upper-hemicontinuous at any rational? At any irrational? Does this correspondence have a closed graph?
6. Let X be a metric space, and $I: X \rightarrow \mathbb{R}_{+}$be a lower semi-continuous function ${ }^{3}$.
(a) Prove that for every given $\varepsilon>0$ there exists an open set U_{ε} containing $x \in X$ such that

$$
\begin{equation*}
\inf \left\{I(y): y \in U_{\varepsilon}\right\} \geq I(x)-\varepsilon \tag{9}
\end{equation*}
$$

(b) Let $x \in X$. For each $n \in \mathbb{N}$ let

$$
\begin{equation*}
m_{n}=\inf \left\{I(y): y \in B_{1 / n}(x)\right\} . \tag{10}
\end{equation*}
$$

Show that $\left\{m_{n}\right\}$ is an increasing sequence and that $m_{n} \rightarrow I(x)$.

[^1]
[^0]: ${ }^{1}$ Please keep your answers short and concise. The solution to each (sub)question could well fit in at most one page.
 ${ }^{2}$ For the definition of \mathbb{R}^{ω} please refer to Q3 of ps. 1

[^1]: ${ }^{3}$ A function $I: X \rightarrow \mathbb{R}$ is called lower semi-continuous iff for every α the set $\{x: I(x)>\alpha\}$ is open in X.

