Econ 204 – Problem Set 3

Due Friday August 3, 2018¹

- 1. Let (X, d) be a metric space:
 - (a) Let $y \in X$ be given. Define the function $d_y : X \to \mathbb{R}$ by

$$d_y(x) = d(x, y) \tag{1}$$

Show that d_y is a continuous function on X for each $y \in X$.

(b) Let A be a subset of X and $x \in X$. Recall that the distance from the point x to the set A is defined as:

$$\rho(x,A) = \inf \left\{ d(x,a) : a \in A \right\}$$
(2)

Show that the closure of set A is the set of all points with zero distance to A, that is:

$$\bar{A} = \left\{ x \in X : \rho(x, A) = 0 \right\}$$
(3)

- (c) Now let $A \subset X$ be a compact subset. Show that $\rho(x, A) = d(x, a)$ for some $a \in A$.
- 2. Let x and y be moving objects in \mathbb{R} . Time is discrete, namely $t \in \mathbb{Z}_+ := \{0\} \cup \mathbb{N}$. In addition, $\beta > 1$ is a fixed parameter. For $a, b \in \mathbb{R}$, let $\rho(a, b) := |a - b| \wedge 1$ (as mentioned in the section, the symbol \wedge is sometimes used to refer to the minimum of two elements). Then for any $x, y \in \mathbb{R}^{\omega^2}$, let

$$d(x,y) = \sum_{t \in \mathbb{Z}_+} \beta^{-t} \rho(x_t, y_t)$$
(4)

denotes the distance between $x = (x_0, x_1, ...)$ and $y = (y_0, y_1, ...)$, where x_t is the position of x at time t on the real line.

- (a) Show that d is a metric on \mathbb{R}^{ω} .
- (b) Show that (\mathbb{R}^{ω}, d) is a bounded metric space.
- (c) Is $[0,1]^{\omega}$ an open or closed subset of \mathbb{R}^{ω} ? (in either case present a proof)
- (d) Is (\mathbb{R}^{ω}, d) a complete metric space? (prove if yes, otherwise provide a counterexample)
- (e) Is $[0,1]^{\omega}$ a totally bounded subset under d? Is it a compact subset?
- 3. Let D be the space of all functions $f: [0,1] \to \mathbb{R}$ such that f is continuous and such that for some $\varepsilon > 0$, $f: (-\varepsilon, 1+\varepsilon) \to \mathbb{R}$ is differentiable and $f': (-\varepsilon, 1+\varepsilon) \to \mathbb{R}$ is

¹Please keep your answers short and concise. The solution to each (sub)question could well fit in at most one page.

²For the definition of \mathbb{R}^{ω} please refer to Q3 of ps.1

continuous. For each $f \in D$, let

$$||f||_{\infty} = \sup\left\{ |f(t)| : t \in [0,1] \right\}$$
 and $||f'||_{\infty} = \sup\left\{ |f'(t)| : t \in [0,1] \right\}$. (5)

Define the function $\|\cdot\|: D \to \mathbb{R}_+$ by

$$\|f\| := \|f\|_{\infty} + \|f'\|_{\infty}$$
(6)

- (a) Show that $(D, \|\cdot\|)$ is a normed vector space.
- (b) Define the function $J: D \to \mathbb{R}$ as

$$J(f) = \int_0^1 c(x) \left(f'(x) \right)^2 dx,$$
(7)

where $c : [0,1] \to \mathbb{R}_+$ is a nonnegative integrable function (its integral over [0,1] is finite). Prove that J is continuous.

- 4. Let X be a connected space. Let \mathcal{R} be an equivalence relation on X such that for each $x \in X$, there exists an open set \mathcal{O}_x containing x such that $\mathcal{O}_x \subset [x]$. Show that \mathcal{R} has only one (distinct) equivalence class.
- 5. Define the correspondence $\Gamma : [0,1] \to 2^{[0,1]}$ by:

$$\Gamma(x) = \begin{cases} [0,1] \cap \mathbb{Q} & \text{if } x \in [0,1] \setminus \mathbb{Q} \\ [0,1] \setminus \mathbb{Q} & \text{if } x \in [0,1] \cap \mathbb{Q} \end{cases}.$$
(8)

Show that Γ is not continuous, but it is lower-hemicontinuous. Is Γ upper-hemicontinuous at any rational? At any irrational? Does this correspondence have a closed graph?

- 6. Let X be a metric space, and $I: X \to \mathbb{R}_+$ be a lower semi-continuous function ³.
 - (a) Prove that for every given $\varepsilon > 0$ there exists an open set U_{ε} containing $x \in X$ such that

$$\inf\{I(y): y \in U_{\varepsilon}\} \ge I(x) - \varepsilon.$$
(9)

(b) Let $x \in X$. For each $n \in \mathbb{N}$ let

$$m_n = \inf \{ I(y) : y \in B_{1/n}(x) \}.$$
 (10)

Show that $\{m_n\}$ is an increasing sequence and that $m_n \to I(x)$.

³A function $I: X \to \mathbb{R}$ is called lower semi-continuous *iff* for every α the set $\{x: I(x) > \alpha\}$ is open in X.