Econ 204 – Problem Set 4

Due Tuesday, August 7

- 1. Let A be an $n \times n$ matrix.
 - (a) Show that if λ is an eigenvalue of A, then λ^k is an eigenvalue of A^k for $k \in \mathbb{N}$.
 - (b) Show that if λ is an eigenvalue of the matrix A and A is invertible, then $1/\lambda$ is an eigenvalue of A^{-1} .
 - (c) Find an expression for det(A) in terms of the eigenvalues of A.
 - (d) The eigenspace of an eigenvalue λ_i is the kernel of $A \lambda_i I$. Show that the eigenspace of any matrix A belonging to an eigenvalue λ_i is a vector space.
- 2. Let V be an n-dimensional vector space. Call a linear operator $T: V \to V$ idempotent if $T \circ T = T$. Prove that all such operators are diagonalizable (that is, any matrix representation $A = Mtx_U(T)$ is diagonalizable). What are the eigenvalues?
- 3. Construct a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that ker $T = \operatorname{im} T$.
- 4. Suppose a linear transformation $T : \mathbb{R}^k \to \mathbb{R}^k$ has the property that $T^n = 0$ for some integer n > 0. Show that T is not invertible, but that T + I is invertible.
- 5. Call a function $T: V \to W$ additive if T(x+y) = T(x) + T(y) for every $x, y \in V$. Prove the following:
 - (a) Any rational additive function $T : \mathbb{Q} \to \mathbb{Q}$ is linear.
 - (b) There is some real additive function $T: \mathbb{R} \to \mathbb{R}$ that is not linear.
 - (c) If an additive function $T : \mathbb{R} \to \mathbb{R}$ is nonlinear, then its graph $\Gamma = \{(x, T(x)) : x \in \mathbb{R}\}$ is dense in \mathbb{R}^2 .
 - (d) If an additive function $T : \mathbb{R} \to \mathbb{R}$ is continuous at a point x_0 , then it is linear.
- 6. (a) Show that det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ is continuous.
 - (b) Use the continuity of the determinant to prove that the set of all invertible matrices is an open, dense subset of all square matrices.