Econ 204 – Problem Set 5^1

Due Friday August 10, 2018

1. Assume that $f:[0,\infty) \to \mathbb{R}$ is differentiable for all x > 0, and $f'(x) \to 0$ as $x \to \infty$. Prove

$$\lim_{x \to \infty} [f(x+1) - f(x)] = 0.$$
(1)

Hint: Use the mean value theorem, and then send $x \to \infty$.

2. Let $f_n : \mathbb{R} \to \mathbb{R}$ be differentiable for each $n \in \mathbb{N}$ with $|f'_n(x)| \leq 1$ for all n and x. Assume,

$$\lim_{n \to \infty} f_n(x) = g(x) \tag{2}$$

for all x. Prove that $g : \mathbb{R} \to \mathbb{R}$ is Lipschitz-continuous.

- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a function that is strictly increasing and twice differentiable, with $f''(x) \ge 0$ for each $x \in \mathbb{R}$. Assume there exists $y \in \mathbb{R}$ such that f(y) = 0.
 - (a) Show that f'(x) > 0 for all $x \in \mathbb{R}$.
 - (b) Fix $x_0 > y$ and define the sequence $\{x_n\}$ generated recursively by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$
(3)

Show that $x_n \to y$.

4. The goal of this exercise is to verify the **Banach-Steinhaus** theorem. Let $\{T_n\}$ be a sequence of bounded linear functions $T_n : X \to Y$ from a Banach (complete normed vector) space X into a normed vector space Y, such that $\{T_n(x)\}$ is bounded for every $x \in X$, that is for all $x \in X$ there exists $c_x \in \mathbb{R}_+$ such that:

$$\left\| T_n(x) \right\| \le c_x \quad \forall n \in \mathbb{N} \tag{4}$$

Then, we want to show that the sequence of norms $\{||T_n||\}$ is bounded, that is there exists c > 0 such that $||T_n|| \le c$ for all $n \in \mathbb{N}$.

- (a) For every $k \in \mathbb{N}$ let $A_k \subseteq X$ be the set of all $x \in X$ such that $||T_n(x)|| \leq k$ for all n. Show that A_k is closed under the X-norm.
- (b) Use equation (4) to show that $X = \bigcup_{k \in \mathbb{N}} A_k$.
- (c) The **Baire's** theorem states that in this case since X is complete, there exists some A_{k_0} that contains an open ball, say $B_{\varepsilon}(x_0) \subseteq A_{k_0}$. Take this result as given, and prove there exists some constant c > 0 such that

$$|T_n|| \le c \quad \forall n \in \mathbb{N}. \tag{5}$$

¹Please keep your answers short and concise. The solution to each question could well fit in at most one page.

Hint: For every nonzero $x \in X$ there exists $\gamma > 0$ such that $x = \frac{1}{\gamma}(z - x_0)$, where $x_0, z \in B_{\varepsilon}(x_0)$ and $\gamma > 0$.

5. Suppose $\Psi: X \to 2^Y$ is a correspondence with nonempty and compact values, where $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m$ for some n, m. Suppose there exists $\beta \in (0, 1)$ such that for all $x, y \in X$,

$$\sup_{w \in \Psi(y)} \inf_{z \in \Psi(x)} \|w - z\| \le \beta \|x - y\|.$$
(6)

Show directly from the definition of upper hemicontinuity that Ψ is upper hemicontinuous.