Econ 204 – Problem Set 6

Due Monday, August 13 in Walker's mailbox (Evans 612)

1. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 function. Define $F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ by

$$F(x,\omega) = f(x) + \omega$$

Show that there is a set $\Omega_0 \subset \mathbb{R}^n$ of Lebesgue measure zero such that, if $\omega \notin \Omega_0$, then for each x_0 satisfying $F(x_0, \omega_0) = 0$ there is an open set U containing x_0 , an open set V containing ω_0 , and a C^1 function $h: V \to U$ such that for all $\omega \in V$, $x = h(\omega)$ is the unique element of U satisfying $F(x, \omega) = 0$.

- 2. Define an open half-space as $S = \{y \in \mathbb{R}^n : p \cdot y < c\}$ for some $p \in \mathbb{R}^n$ and $c \in R$. Show that if $A \subsetneq \mathbb{R}^n$ is non-empty, open and convex, then A is equal to the intersection of all open half-spaces containing A.
- 3. Call a vector $\pi \in \mathbb{R}^n$ a probability vector if

$$\sum_{i=1}^{n} \pi_i = 1 \text{ and } \pi_i \ge 0 \ \forall i$$

We say there are n states of the world, and π_i is the probability that state i occurs. Suppose there are two traders (trader 1 and trader 2) who each have a set of prior probability distributions (Π_1 and Π_2) which are nonempty, convex, and compact. Call a *trade* a vector $f \in \mathbb{R}^n$, which denotes the net transfer trader 1 receives in each state of the world (and thus -f is the net transfer trader 2 receives in each state of the world). A trade is *agreeable* if

$$\inf_{\pi \in \Pi_1} \sum_{i=1}^n \pi_i f_i > 0 \text{ and } \inf_{\pi \in \Pi_2} \sum_{i=1}^n \pi_i (-f_i) > 0$$

Prove that there exists an agreeable trade if and only if there is no common prior (that is, $\Pi_1 \cap \Pi_2 = \emptyset$).

- 4. Prove the following for any convex set $A \subset \mathbb{R}^n$:
 - (a) int A and \overline{A} are convex.
 - (b) If A is closed, then A has a unique smallest element (in terms of norm).
 - (c) A is connected.
- 5. The Minimax Theorem: Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be non-empty, compact, and convex sets. Suppose that $f: X \times Y \to \mathbb{R}$ is continuous. Further, for any $x \in X, y \in Y$, and $\alpha \in \mathbb{R}$, suppose the sets

$$\{x' \in X : f(x', y) \ge \alpha\}, \ \{y' \in X : f(x, y') \le \alpha\}$$

are convex. Show that

$$\max_{x \in X} \min_{y \in Y} f(x, y) = \min_{y \in Y} \max_{x \in X} f(x, y)$$

Hint: consider the following correspondences:

$$\Phi(y) = \underset{x \in X}{\arg \max} f(x, y)$$
$$\Pi(x) = \underset{y \in Y}{\arg \min} f(x, y)$$
$$\Gamma(x, y) = \Pi(x) \times \Phi(y)$$

where $\Phi: Y \to 2^Y$, $\Pi: X \to 2^X$, and $\Gamma: X \times Y \to 2^{X \times Y}$.

6. Consider the following inhomogeneous second-order linear differential equation:

$$x''(t) - 2x'(t) + x(t) = \sin(t)$$

- (a) Find the general solution of the corresponding homogeneous equation.
- (b) Find a particular solution of the original inhomogeneous equation satisfying the initial conditions x(0) = 1 and x'(0) = 0.
- (c) Find the general solution of the original inhomogeneous equation.