Econ 204 - Problem Set 6

Due Monday, August 13 in Walker's mailbox (Evans 612)

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1} function. Define $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
F(x, \omega)=f(x)+\omega
$$

Show that there is a set $\Omega_{0} \subset \mathbb{R}^{n}$ of Lebesgue measure zero such that, if $\omega \notin \Omega_{0}$, then for each x_{0} satisfying $F\left(x_{0}, \omega_{0}\right)=0$ there is an open set U containing x_{0}, an open set V containing ω_{0}, and a C^{1} function $h: V \rightarrow U$ such that for all $\omega \in V, x=h(\omega)$ is the unique element of U satisfying $F(x, \omega)=0$.
2. Define an open half-space as $S=\left\{y \in \mathbb{R}^{n}: p \cdot y<c\right\}$ for some $p \in \mathbb{R}^{n}$ and $c \in R$. Show that if $A \subsetneq \mathbb{R}^{n}$ is non-empty, open and convex, then A is equal to the intersection of all open half-spaces containing A.
3. Call a vector $\pi \in \mathbb{R}^{n}$ a probability vector if

$$
\sum_{i}^{n} \pi_{i}=1 \text { and } \pi_{i} \geq 0 \forall i
$$

We say there are n states of the world, and π_{i} is the probability that state i occurs. Suppose there are two traders (trader 1 and trader 2) who each have a set of prior probability distributions $\left(\Pi_{1}\right.$ and $\left.\Pi_{2}\right)$ which are nonempty, convex, and compact. Call a trade a vector $f \in \mathbb{R}^{n}$, which denotes the net transfer trader 1 receives in each state of the world (and thus $-f$ is the net transfer trader 2 receives in each state of the world). A trade is agreeable if

$$
\inf _{\pi \in \Pi_{1}} \sum_{i=1}^{n} \pi_{i} f_{i}>0 \text { and } \inf _{\pi \in \Pi_{2}} \sum_{i=1}^{n} \pi_{i}\left(-f_{i}\right)>0
$$

Prove that there exists an agreeable trade if and only if there is no common prior (that is, $\Pi_{1} \cap \Pi_{2}=\varnothing$).
4. Prove the following for any convex set $A \subset \mathbb{R}^{n}$:
(a) $\operatorname{int} A$ and \bar{A} are convex.
(b) If A is closed, then A has a unique smallest element (in terms of norm).
(c) A is connected.
5. The Minimax Theorem: Let $X \subset \mathbb{R}^{n}$ and $Y \subset \mathbb{R}^{m}$ be non-empty, compact, and convex sets. Suppose that $f: X \times Y \rightarrow \mathbb{R}$ is continuous. Further, for any $x \in X, y \in Y$, and $\alpha \in \mathbb{R}$, suppose the sets

$$
\left\{x^{\prime} \in X: f\left(x^{\prime}, y\right) \geq \alpha\right\}, \quad\left\{y^{\prime} \in X: f\left(x, y^{\prime}\right) \leq \alpha\right\}
$$

are convex. Show that

$$
\max _{x \in X} \min _{y \in Y} f(x, y)=\min _{y \in Y} \max _{x \in X} f(x, y)
$$

Hint: consider the following correspondences:

$$
\begin{aligned}
\Phi(y) & =\underset{x \in X}{\arg \max } f(x, y) \\
\Pi(x) & =\underset{y \in Y}{\arg \min } f(x, y) \\
\Gamma(x, y) & =\Pi(x) \times \Phi(y)
\end{aligned}
$$

where $\Phi: Y \rightarrow 2^{Y}, \Pi: X \rightarrow 2^{X}$, and $\Gamma: X \times Y \rightarrow 2^{X \times Y}$.
6. Consider the following inhomogeneous second-order linear differential equation:

$$
x^{\prime \prime}(t)-2 x^{\prime}(t)+x(t)=\sin (t)
$$

(a) Find the general solution of the corresponding homogeneous equation.
(b) Find a particular solution of the original inhomogeneous equation satisfying the initial conditions $x(0)=1$ and $x^{\prime}(0)=0$.
(c) Find the general solution of the original inhomogeneous equation.

