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Differential Equations

Definition 1. A differential equation is an equation of the form

y′(t) = F (y(t), t)

where F : U → R
n and U is an open subset of Rn × R.

An initial value problem is a differential equation combined with

an initial condition

y(t0) = y0

with (y0, t0) ∈ U.

A solution of the initial value problem is a differentiable function

y : (a, b) → Rn such that t0 ∈ (a, b), y(t0) = y0 and, for all

t ∈ (a, b), dy
dt = F (y(t), t).

2



The general solution of the differential equation is the family of

all solutions for all initial values (y0, t0) ∈ U.



Existence and Uniqueness of Solutions
Theorem 1. Consider the initial value problem

y′(t) = F (y(t), t), y(t0) = y0 (1)

Let U be an open set in Rn × R containing (y0, t0).

1. Suppose F : U → Rn is continuous. Then the initial value

problem has a solution.

2. If, in addition, F is Lipschitz in y on U, i.e. there is a constant

K such that for all (y, t), (ŷ, t) ∈ U,

|F (y, t) − F (ŷ, t)| ≤ K|y − ŷ|

then there is an interval (a, b) containing t0 such that the

solution is unique on (a, b).
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Proof. We consider only the case in which F is Lipschitz.

Since U is open, we may choose r > 0 such that

R = {(y, t) : |y − y0| ≤ r, |t − t0| ≤ r} ⊆ U

Since F is continuous, we may find M ∈ R such that |F (y, t)| ≤ M

for all (y, t) ∈ R.

Given the Lipschitz condition, we may assume that

|F (y, t) − F (ŷ, t)| ≤ K|y − ŷ| for all (y, t), (ŷ, t) ∈ R

Let

δ = min

{

1

2K
,

r

M

}

We claim the initial value problem has a unique solution on

(t0 − δ, t0 + δ).
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Let C be the space of continuous functions from [t0 − δ, t0 + δ]

to Rn, endowed with the sup norm

‖f‖∞ = sup{‖f(t)‖ : t ∈ [t0 − δ, t0 + δ]}

Let

S = {z ∈ C : (z(s), s) ∈ R for all s ∈ [t0 − δ, t0 + δ]}

S is a closed subset of the complete metric space C, so S is a

complete metric space.

Consider the function I : S → C defined by

I(z)(t) = y0 +

∫ t

t0
F (z(s), s) ds

I(z) is defined and continuous because F is bounded and contin-

uous on R. Observe that if (z(s), s) ∈ R for all s ∈ [t0 − δ, t0 + δ],



then

‖I(z)(t) − y0‖ =

∥

∥

∥

∥

∥

∫ t

t0
F (z(s), s) ds

∥

∥

∥

∥

∥

≤ |t − t0|max{‖F (y, s)‖ : (y, s) ∈ R}

≤ δM

≤ r

so (I(z)(t), t) ∈ R for all t ∈ [t0 − δ, t0 + δ]. Thus, I : S → S.



Given two functions x, z ∈ S and t ∈ [t0 − δ, t0 + δ],

‖I(z)(t) − I(x)(t)‖ =

∥

∥

∥

∥

∥

y0 +
∫ t

t0
F (z(s), s) ds − y0 −

∫ t

t0
F (x(s), s) ds

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∫ t

t0
(F (z(s), s)− F (x(s), s)) ds

∥

∥

∥

∥

∥

≤ |t − t0| sup
s∈[t0−δ,t0+δ]

‖F (z(s), s)− F (x(s), s)‖

≤ δK sup{‖z(s) − x(s)‖ : s ∈ [t0 − δ, t0 + δ]}

≤
1

2
‖z − x‖∞

Therefore, ‖I(z) − I(x)‖∞ ≤ 1
2‖z − x‖∞, so I is a contraction.

Since S is a complete metric space, I has a unique fixed point

y ∈ S. Therefore, for all t ∈ [t0 − δ, t0 + δ], we have

I(y)(t) = y(t) = y0 +
∫ t

t0
F (y(s), s) ds



F is continuous, so the Fundamental Theorem of Calculus im-

plies that

y′(t) = F (y(t), t)

for all t ∈ (t0 − δ, t0 + δ). Since we also have

y(t0) = y0 +
∫ t0

t0
F (y(s), s) ds = y0

y (restricted to (t0 − δ, t0 + δ)) is a solution of the initial value

problem (1).

On the other hand, suppose that ŷ is any solution of the initial

value problem (1) on (t0 − δ, t0 + δ). It is easy to check that

(ŷ(s), s) ∈ R for all s ∈ (t0−δ, t0+δ), so we have |F (ŷ(s), s)| ≤ M ;

this implies that ŷ has a extension to a continuous function (still

denoted ŷ) in S. Since ŷ is a solution of the initial value problem,



the Fundamental Theorem of Calculus implies that I (ŷ) = ŷ.

Since y is the unique fixed point of I, ŷ = y.



Example: Consider the initial value problem

y′(t) = 1 + y2(t), y(0) = 0

Here, we have F (y, t) = 1 + y2 which is Lipschitz in y over

U = V × R, provided that V is bounded, but not over all of

R×R. The theorem tells us that the initial value problem has a

unique solution over some interval of times (a, b), with 0 ∈ (a, b).

We claim the unique solution is y(t) = tan t. To see this, note
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that

y′(t) =
d

dt
tan t

=
d

dt

sin t

cos t

=
cos t cos t − sin t(− sin t)

cos2 t

=
cos2 t + sin2 t

cos2 t

= 1 +
sin2 t

cos2 t
= 1 + tan2 t

= 1 + (y(t))2

y(0) = tan0

= 0



Notice that y(t) is defined for t ∈
(

−π
2, π

2

)

, but

lim
t→−π

2
+

y(t) = −∞ and lim
t→π

2
−

y(t) = ∞

Thus, the solution of the initial value problem cannot be ex-

tended beyond the interval
(

−π
2, π

2

)

, because the solution “blows

up” at −π/2 and π/2.



Remark: The initial value problem of Equation (1) has a solu-

tion defined on the interval

(inf {t : ∀s ∈ (t, t0] (y(s), s) ∈ U} , sup {t : ∀s ∈ [t0, t) (y(s), s) ∈ U})

and it is unique on this interval provided that F is locally Lipschitz

on U, i.e. for every (y, t) ∈ U, there is an open set V with

(y, t) ∈ V ⊆ U such that F is Lipschitz on V .
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Autonomous Differential Equations

In many situations of interest, the function F in the differential

equation does not depend on t.

Definition 2. An autonomous differential equation is a differen-

tial equation of the form

y′(t) = F (y(t))

where F : Rn → Rn depends on t only through the value of y(t).

A stationary point of an autonomous differential equation is a

point ys ∈ Rn such that F (ys) = 0.
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Autonomous Differential Equations

We study the qualitative properties of autonomous differential
equations by looking for stationary points. The constant func-

tion

y(t) = ys

is a solution (and the unique solution when F is Lipschitz) of the

initial value problem

y′ = F (y), y(t0) = ys

If F is C2, then Taylor’s Theorem implies that near a stationary

point ys,

F (ys + h) = F (ys) + DF (ys)h + O
(

|h|2
)

= DF (ys)h + O
(

|h|2
)
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Thus, when we are sufficiently close to the stationary point,

the solutions of the autonomous differential equation are closely

approximated by the solutions of the linear differential equation

y′ = (y − ys)
′ = DF (ys)(y − ys)

Thus, we study solutions of linear differential equations, using

linear algebra.





Complex Exponentials

The exponential function ex (for x ∈ R or x ∈ C) is given by the

Taylor series

ex =
∞
∑

k=0

xk

k!

For x, y ∈ C, we have

ex+y = exey
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If x ∈ C, x = a + ib for a, b ∈ R, so

ex = ea+ib

= eaeib

= ea





∞
∑

k=0

(ib)k

k!





= ea





∞
∑

k=0

(ib)2k

(2k)!
+

∞
∑

k=0

(ib)2k+1

(2k + 1)!





= ea





∞
∑

k=0

i2k b2k

(2k)!
+ i

∞
∑

k=0

i2k b2k+1

(2k + 1)!





= ea





∞
∑

k=0

(−1)k b2k

(2k)!
+ i

∞
∑

k=0

(−1)k b2k+1

(2k + 1)!





= ea (cos b + i sin b)



Now suppose that t ∈ R, so

etx = eta+itb = eta(cos tb + i sin tb)

• If a < 0, then etx → 0 as t → ∞

• If a > 0, then
∣

∣

∣etx
∣

∣

∣→ ∞ as t → ∞

• If a = 0, then
∣

∣

∣etx
∣

∣

∣ = 1 for all t ∈ R



Linear Differential Equations with Constant
Coefficients

Let M ∈ Rn×n. The linear differential equation

y′ = (y − ys)
′ = M(y − ys)

has a complete solution in closed form.

The matrix representation

M = DF (ys)

need not be symmetric, hence may not be diagonalizable. If M is

diagonalizable over C, the complete solution takes the following

simple form:
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Theorem 2. Consider the linear differential equation

y′ = (y − ys)
′ = M(y − ys)

where M is a real n×n matrix. Suppose that M can be diagonal-

ized over the complex field C. Let U be the standard basis of Rn

and V = {v1, . . . , vn} be a basis of (complex) eigenvectors corre-

sponding to the eigenvalues λ1, . . . , λn ∈ C. Then the solution of

the initial value problem is given by

y(t) = ys+P−1













eλ1(t−t0) 0 · · · 0

0 eλ2(t−t0) · · · 0
... ... . . . ...

0 0 · · · eλn(t−t0)













P (y(t0)−ys)

(2)

where P = MtxV,U(id), and the general complex solution is ob-

tained by allowing y(t0) to vary over Cn; it has n complex degrees



of freedom. The general real solution is obtained by allowing

y(t0) to vary over Rn; it has n real degrees of freedom. Every

real solution is a linear combination of the real and imaginary

parts of a complex solution. In particular,

1. If the real part of each eigenvalue is less than zero, all solu-

tions converge to ys.

2. If the real part of each eigenvalue is greater than zero, all

solutions diverge from ys and tend to infinity.

3. If the real parts of some eigenvalues are less than zero and

the real parts of other eigenvalues are greater than zero,

solutions follow roughly hyperbolic paths.



4. If the real parts of all eigenvalues are zero, all solutions follow

closed cycles around ys.



Proof. Let P = MtxV,U(id). Rewrite the differential equation in

terms of a new variable

z = Py

the representation of the solution with respect to the basis V of

eigenvectors. Let zs = Pys. Then we have

z − zs = P (y − ys)

(z − zs)
′ = z′

= Py′

= PM(y − ys)

= PMP−1(z − zs)

= B(z − zs)
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where

B =











λ1 0 0 · · · 0
0 λ2 0 · · · 0
... ... ... . . . ...
0 0 0 · · · λn











Thus, the ith component of (z(t) − zs) satisfies the differential

equation

(z(t) − zs)
′
i = λi (z(t) − zs)i

so

(z(t) − zs)i = eλi(t−t0)(z(t0) − zs)i



so

z(t) − zs =













eλ1(t−t0) 0 0 · · · 0

0 eλ2(t−t0) 0 · · · 0
... ... ... . . . ...

0 0 0 · · · eλn(t−t0)













(z(t0) − zs)

y(t) − ys = P−1(z(t) − zs)

= P−1













eλ1(t−t0) 0 0 · · · 0

0 eλ2(t−t0) 0 · · · 0
... ... ... . . . ...

0 0 0 · · · eλn(t−t0)













(z(t0) − zs)

= P−1













eλ1(t−t0) 0 0 · · · 0

0 eλ2(t−t0) 0 · · · 0
... ... ... . . . ...

0 0 0 · · · eλn(t−t0)













P (y(t0) − ys)



Example: Suppose

ȳ′ =

(

0 1
2 1

)

ȳ

where

ȳ =

(

y
y′

)

The eigenvalues are the roots of the characteristic polynomial

λ2 − λ − 2 = 0

So eigenvalues are λ1 = 2 and λ2 = −1

15



The general solution is given by
(

y(t)
y′(t)

)

= MtxU,V (id)

(

e2(t−t0) 0

0 e−(t−t0)

)

MtxV,U(id)

(

y(t0)
y′(t0)

)

=

(

1 1
2 −1

)(

e2(t−t0) 0

0 e−(t−t0)

)(

1/3 1/3
2/3 −1/3

)(

y(t0)
y′(t0)

)

=











e2(t−t0)+2e−(t−t0)

3
e2(t−t0)−e−(t−t0)

3

2e2(t−t0)−2e−(t−t0)

3
2e2(t−t0)+e−(t−t0)

3

















y(t0)

y′(t0)







=









y(t0)+y′(t0)
3 e2(t−t0) + 2y(t0)−y′(t0)

3 e−(t−t0)

2y(t0)+2y′(t0)
3 e2(t−t0) + −2y(t0)+y′(t0)

3 e−(t−t0)









The general solution has two real degrees of freedom; a specific
solution is determined by specifying initial conditions y(t0) and
y′(t0).
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The Form of Real Solutions

We can determine the form of the real solutions once we know

the eigenvalues. In an important special case, we can solve for

the solution of the initial value problem without calculating the

diagonalization, as in Equation (2).

Theorem 3. Consider the differential equation

y′ = (y − ys)
′ = M(y − ys)

Suppose that the matrix M can be diagonalized over C. Let the

eigenvalues of M with the correct multiplicity be

a1 + ib1, a1 − ib1, . . . , am + ibm, am − ibm, am+1, . . . , an−m
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Then for each fixed i = 1, . . . , n, every real solution is of the form

(y(t) − ys)i =
m
∑

j=1

eaj(t−t0)
(

Cij cos bj(t − t0) + Dij sin bj(t − t0)
)

+
n−m
∑

j=m+1

Cije
aj(t−t0)

The n2 parameters

{Cij : i = 1, . . . , n; j = 1, . . . , n−m}∪{Dij : i = 1, . . . , n; j = 1, . . . , m}

have n real degrees of freedom. The parameters are uniquely

determined from the n real initial conditions of an initial value

problem.



Proof. Rewrite the expression for the solution y as

(y(t) − ys)i =
n
∑

j=1

γije
λj(t−t0)

Recall that the non-real eigenvalues occur in conjugate pairs, so

suppose that

λj = a + ib, λk = a − ib

so the expression for (y(t) − ys)i contains the pair of terms

γije
λj(t−t0) + γikeλk(t−t0) =

= γije
a(t−t0) (cos b(t − t0) + i sin b(t − t0))

+γikea(t−t0) (cos b(t − t0) − i sin b(t − t0))

= ea(t−t0)
((

γij + γik

)

cos b(t − t0) + i
(

γij − γik

)

sin b(t − t0)
)

= ea(t−t0)
(

Cij cos b(t − t0) + Dij sin b(t − t0)
)



Since this must be real for all t, we must have

Cij = γij + γik ∈ R and Dij = i
(

γij − γik

)

∈ R

so γij and γik are complex conjugates; this can also be shown

directly from the matrix formula for y in terms of z.

Thus, if the eigenvalues λ1, . . . , λn are

a1+ib1, a1−ib1, a2+ib2, a2−ib2, . . . , am+ibm, am−ibm, am+1, . . . , an−m

every real solution will be of the form

(y(t) − ys)i =
m
∑

j=1

eaj(t−t0)
(

Cij cos bj(t − t0) + Dij sin bj(t − t0)
)

+
n−m
∑

j=m+1

Cije
aj(t−t0)



Since the differential equation satisfies a Lipschitz condition, the

initial value problem has a unique solution determined by the n

real initial conditions. Thus, the general solution has exactly n

real degrees of freedom in the n2 coefficients.



Remark: A simpler approach to finding the general solution in

the special case

ȳ =













y
y′
...

y(n−1)













In this case, the coefficients

C11, . . . , C1(n−m), D11, . . . , D1m

in the general solution are arbitrary real numbers; once they are

set, the other coefficients are determined.
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Write

y(t) − ys =
m
∑

j=1

eaj(t−t0)
(

Cj cos bj(t − t0) + Dj sin bj(t − t0)
)

+
n−m
∑

j=m+1

Cje
aj(t−t0)

For the initial value problem, compute the first n−1 derivatives of

y at t0 and set them equal to the initial conditions. This yields

n linear equations in the n coefficients, which have a unique

solution.
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Example: Suppose

ȳ′ =

(

0 1
2 1

)

ȳ

where

ȳ =

(

y
y′

)

The eigenvalues are the roots of the characteristic polynomial

λ2 − λ − 2 = 0

So eigenvalues are λ1 = 2 and λ2 = −1
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Set

y(t) = C1e2(t−t0) + C2e−(t−t0)

Then

y(t0) = C1 + C2

y′(t) = 2C1e2(t−t0) − C2e−(t−t0)

y′(t0) = 2C1 − C2

C1 =
y(t0) + y′(t0)

3

C2 =
2y(t0) − y′(t0)

3

y(t) =
y(t0) + y′(t0)

3
e2(t−t0) +

2y(t0) − y′(t0)

3
e−(t−t0)
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