Econ 2042019
 Lecture 2

Outline

1. Cardinality (cont.)
2. Algebraic Structures: Fields and Vector Spaces
3. Axioms for \mathbf{R}
4. Sup, Inf, and the Supremum Property
5. Intermediate Value Theorem

Notation: Given a set $A, 2^{A}$ is the set of all subsets of A. This is the "power set" of A, also denoted $P(A)$.

Important example of an uncountable set:
Theorem 1 (Cantor). 2^{N}, the set of all subsets of N , is not countable.

Proof. Suppose 2^{N} is countable. Then there is a bijection f : $\mathbf{N} \rightarrow 2^{\mathbf{N}}$. Let $A_{m}=f(m)$. We create an infinite matrix, whose
$(m, n)^{t h}$ entry is 1 if $n \in A_{m}$, 0 otherwise:

Now, on the main diagonal, change all the $0 s$ to 1 s and vice
versa:

			1			3	4	5
	$A_{1}=$	\emptyset				0	0	0
	$A_{2}=$	\{1\}					0	0
$2^{\text {N }}$	$A_{3}=$	$\{1,2,3\}$	1					0
	$A_{4}=$	N	1		1	1		
	$A_{5} \underset{\vdots}{=}$				1	0	1	

formalizing:

Let

$$
t_{m n}= \begin{cases}1 & \text { if } n \in A_{m} \\ 0 & \text { if } n \notin A_{m}\end{cases}
$$

Let $A=\left\{m \in \mathbf{N}: t_{m m}=0\right\}$.

$$
\begin{aligned}
m \in A & \Leftrightarrow t_{m m}=0 \\
& \Leftrightarrow m \notin A_{m} \\
1 \in A & \Leftrightarrow 1 \notin A_{1} \text { so } A \neq A_{1} \\
2 \in A & \Leftrightarrow 2 \notin A_{2} \text { so } A \neq A_{2} \\
& \vdots \\
m \in A & \Leftrightarrow m \notin A_{m} \text { so } A \neq A_{m} \quad \forall m \in \mathbb{N}
\end{aligned}
$$

Therefore, $A \neq f(m)$ for any m, so f is not onto, contradiction.
associate to each set A "Cardinality" |A|

Some Additional Facts About Cardinality

Recall we let $|A|$ denote the cardinality of a set A.

- if A is numerically equivalent to $\{1, \ldots, n\}$ for some $n \in \mathbf{N}$, then $|A|=n$.
- A and B are numerically equivalent if and only if $|A|=|B|$
- if $|A|=n$ and A is a proper subset of B (that is, $A \subseteq B$ and $A \neq B$) then $|A|<|B|$
- if A is countable and B is uncountable, then

$$
n<|A|<|B| \quad \forall n \in \mathbf{N}
$$

- if $A \subseteq B$ then $|A| \leq|B|$
- if $r: A \rightarrow B$ is $1-1$, then $|A| \leq|B|$
- if B is countable and $A \subseteq B$, then A is at most countable, that is, A is either empty, finite, or countable
- if $r: A \rightarrow B$ is $1-1$ and B is countable, then A is at most countable

Algebraic Structures: Fields

Definition 1. A field $\mathcal{F}=(F,+, \cdot)$ is a 3-tuple consisting of a set F and two binary operations $+, \cdot: F \times F \rightarrow F$ such that

1. Associativity of + :

$$
\forall \alpha, \beta, \gamma \in F,(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)
$$

2. Commutativity of + :

$$
\forall \alpha, \beta \in F, \alpha+\beta=\beta+\alpha
$$

3. Existence of additive identity:

4. Existence of additive inverse:

$$
\forall \alpha \in F \exists!(-\alpha) \in F \text { s.t. } \alpha+(-\alpha)=(-\alpha)+\alpha=0
$$

$$
\text { Define } \alpha-\beta=\alpha+(-\beta)
$$

5. Associativity of •:

$$
\forall \alpha, \beta, \gamma \in F,(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma)
$$

6. Commutativity of : :

$$
\forall \alpha, \beta \in F, \alpha \cdot \beta=\beta \cdot \alpha
$$

7. Existence of multiplicative identity:

$$
\exists!1 \in F \text { s.t. } 1 \neq 0 \text { and } \forall \alpha \in F, \alpha \cdot 1=1 \cdot \alpha=\alpha
$$

8. Existence of multiplicative inverse:

$$
\forall \alpha \in F \text { s.t. } \alpha \neq 0 \exists!\alpha^{-1} \in F \text { s.t. } \alpha \cdot \alpha^{-1}=\alpha^{-1} \cdot \alpha=1
$$

$$
\text { Define } \frac{\alpha}{\beta}=\alpha \beta^{-1} . \quad(\beta \neq 0)
$$

9. Distributivity of multiplication over addition:

$$
\forall \alpha, \beta, \gamma \in F, \alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma
$$

Fields

Examples:

- R
- $\mathbf{C}=\{x+i y: x, y \in \mathbf{R}\} . i^{2}=-1$, so

$$
(x+i y)(w+i z)=x w+i x z+i w y+i^{2} y z=(x w-y z)+i(x z+w y)
$$

$$
\text { standard } t, \cdot
$$

- $\mathbf{Q}: \mathbf{Q} \subset \mathbf{R}, \mathbf{Q} \neq \mathbf{R} . \mathbf{Q}$ is closed under,$+ \cdot$, taking additive and multiplicative inverses; the field axioms are inherited from the field axioms on \mathbf{R}, so \mathbf{Q} is a field.

$$
t \text {, standard in } \mathbb{R}
$$

- \mathbf{N} is not a field: no additive identity. $n \not n m \neq n \forall n, m \in \mathbb{N}$
- \mathbf{Z} is $\stackrel{\rightharpoonup}{\text { not }}$ standard in field; no multiplicative inverse for $2 . \nexists z \in \mathbb{R}$ s.t.

$$
z \cdot 2=1
$$

- $\mathbf{Q}(\sqrt{2})$, the smallest field containing $\mathbf{Q} \cup\{\sqrt{2}\}$. Take \mathbf{Q}, add $\sqrt{2}$, and close up under + , \cdot, taking additive and multiplicative inverses. One can show

$$
\mathbf{Q}(\sqrt{2})=\{q+r \sqrt{2}: q, r \in \mathbf{Q}\}
$$

For example,

$$
(q+r \sqrt{2})^{-1}=\frac{q}{q^{2}-2 r^{2}}-\frac{r}{q^{2}-2 r^{2}} \sqrt{2}
$$

- A finite field: $F_{2}=(\{0,1\},+, \cdot)$ where we define

$$
0+1=\begin{aligned}
& 0+0=0 \\
& 1+0=1 \\
& 1+1=0
\end{aligned} \quad 0 \cdot 1=\begin{aligned}
& 0 \cdot 0=0 \\
& 1 \cdot 0=0 \\
& 1 \cdot 1=1
\end{aligned}
$$

("Arithmetic mod 2") $2 \Rightarrow 1=-1$

$$
\begin{gathered}
1+l=1 \text { ? } \\
\text { ? J } \alpha \in F \text { s.t. } 1+\alpha=0
\end{gathered}
$$

Vector Spaces

Definition 2. A vector space is a 4-tuple ($V, F,+, \cdot$) where V is a set of elements, called vectors, F is a field, + is a binary operation on V called vector addition, and $: F \times V \rightarrow V$ is called scalar multiplication, satisfying

1. Associativity of + :

$$
\forall x, y, z \in V,(x+y)+z=x+(y+z)
$$

2. Commutativity of + :

$$
\forall x, y \in V, x+y=y+x
$$

3. Existence of vector additive identity:

$$
\exists!0 \in V \text { s.t. } \forall x \in V, x+0=0+x=x
$$

4. Existence of vector additive inverse:

$$
\begin{aligned}
& \forall x \in V \exists!(-x) \in V \text { s.t. } x+(-x)=(-x)+x=0 \\
& \text { Define } x-y \text { to be } x+(-y)
\end{aligned}
$$

5. Distributivity of scalar multiplication over vector addition:

$$
\forall \alpha \in F, x, y \in V, \alpha \cdot(x+y)=\alpha \cdot x+\alpha \cdot y
$$

6. Distributivity of scalar multiplication over scalar addition:

$$
\forall \alpha, \beta \in F, x \in V \quad(\alpha+\beta) \cdot x=\alpha \cdot x+\beta \cdot x
$$

7. Associativity of • :

$$
\forall \alpha, \beta \in F, x \in V \quad(\alpha \cdot \beta) \cdot x=\alpha \cdot(\beta \cdot x)
$$

8. Multiplicative identity:

$$
\forall x \in V \quad 1 \cdot x=x
$$

(Note that 1 is the multiplicative identity in $F ; 1 \notin V$)
" V is a vector space over F " or "V over FF"

Vector Spaces

Examples:

1. \mathbf{R}^{n} over \mathbf{R}.
2. \mathbf{R} is a vector space over \mathbf{Q} :
(scalar multiplication) $q \cdot r=q r$ (product in \mathbf{R})
\mathbf{R} is not finite-dimensional over \mathbf{Q}, i.e. \mathbf{R} is not \mathbf{Q}^{n} for any $n \in \mathbf{N}$.
3. \mathbf{R} is a vector space over \mathbf{R}.
4. $\mathbf{Q}(\sqrt{2})$ is a vector space over \mathbf{Q}. As a vector space, it is Q^{2}; as a field, you need to take the funny field multiplication.

$$
\text { i.e }(q, 5) \text { versus } q+5 \sqrt{2}
$$

5. $\mathbf{Q}(\sqrt[3]{2})$, as a vector space over \mathbf{Q}, is \mathbf{Q}^{3}.
6. $\left(F_{2}\right)^{n}$ is a finite vector space over F_{2}.

$$
f:[0,1] \rightarrow \mathbb{R} \text { contimous }
$$

7. $C([0,1])$, the space of all continuous real-valued functions on $[0,1]$, is a vector space over R.

- vector addition: $f, g \in C([0,1])$

$$
(f+g)(t)=f(t)+g(t)
$$

Note we define the function $f+g$ by specifying what value it takes for each $t \in[0,1]$.

- scalar multiplication: $\alpha \in \mathbb{R}, \quad f \in C([0,1])$

$$
\begin{equation*}
(\alpha f)(t)=\alpha(f(t)) \tag{0,1}
\end{equation*}
$$

- vector additive identity: 0 is the function which is identically zero: $O(t)=0$ for all $t \in[0,1]$.
- vector additive inverse:

$$
(-f)(t)=-(f(t))
$$

$$
\forall t \in[0,1]
$$

Axioms for \mathbf{R}

1. R is a field with the usual operations,$+ \cdot$, additive identity 0 , and multiplicative identity 1 .
2. Order Axiom: There is a complete ordering \leq, i.e. \leq is reflexive, transitive, antisymmetric $\left(\alpha \leq \beta, \beta \leq \alpha \Rightarrow \begin{array}{c}\alpha=\beta) \\ \text { (order) }\end{array}\right)$ with the property that

$$
\forall \alpha, \beta \in \mathbf{R} \text { either } \alpha \leq \beta \text { or } \beta \leq \alpha \quad \text { (complete) }
$$

The order is compatible with + and \cdot, i.e.

$$
\begin{gathered}
\forall \alpha, \beta, \gamma \in \mathbf{R}\left\{\begin{array}{r}
\alpha \leq \beta \Rightarrow \alpha+\gamma \leq \beta+\gamma \\
\alpha \leq \beta, 0 \leq \gamma \Rightarrow \alpha \gamma \leq \beta \gamma
\end{array}\right. \\
\alpha \geq \beta \text { means } \beta \leq \alpha \cdot \alpha<\beta \text { means } \alpha \leq \beta \text { and } \alpha \neq \beta .
\end{gathered}
$$

Completeness Axiom

3. Completeness Axiom: Suppose $L, H \subseteq \mathbf{R}, L \neq \emptyset \neq H$ satisfy

$$
\ell \leq h \quad \forall \ell \in L, h \in H
$$

Then

$$
\begin{aligned}
& \exists \alpha \in \mathbf{R} \text { s.t. } \ell \leq \alpha \leq h \quad \forall \ell \in L, h \in H
\end{aligned}
$$

The Completeness Axiom differentiates \mathbf{R} from \mathbf{Q} : \mathbf{Q} satisfies all the axioms for \mathbf{R} except the Completeness Axiom.

Sups, Infs, and the Supremum Property

 Definition 3. Suppose $X \subseteq \mathbf{R}$. We say $u u^{e^{\mathbb{R}}}$ is an upper bound for X if$$
x \leq u \forall x \in X
$$

and ℓ is a lower bound for X if

$$
\ell \leq x \forall x \in X
$$

X is bounded above if there is an upper bound for X, and bounded below if there is a lower bound for X.

Definition 4. Suppose $X^{〔}$ is bounded above. The supremum of X, written $\sup X$, is the least upper bound for X, i.e. $\sup X$ satisfies

$$
\sup X \geq x \quad \forall x \in X(\sup X \text { is an upper bound })
$$

$\forall y<\sup X \exists x \in X$ s.t. $x>y$ (there is no smaller upper bound) Analogously, suppose X is bounded below. The infimum of X, written inf X, is the greatest lower bound for X, i.e. inf X satisfies

$$
\begin{gathered}
\inf X \leq x \quad \forall x \in X \text { (inf } X \text { is a lower bound) } \\
\forall y>\inf X \exists x \in X \text { s.t. } x<y \text { (there is no greater lower bound) }
\end{gathered}
$$

If X is not bounded above, write $\sup X=\infty$. If X is not bounded below, write $\inf X=-\infty$. Convention: $\sup \emptyset=-\infty, \inf \emptyset=+\infty$.

The Supremum Property

The Supremum Property: Every nonempty set of real numbers that is bounded above has a supremum, which is a real number. Every nonempty set of real numbers that is bounded below has an infimum, which is a real number.

Note: $\sup X$ need not be an element of X. For example, $\sup (0,1)=1 \notin(0,1)$.

The Supremum Property

Theorem 2 (Theorem 6.8, plus...). The Supremum Property and the Completeness Axiom are equivalent.

Proof. Assume the Completeness Axiom. Let $X \subseteq \mathbf{R}$ be a nonempty set that is bounded above. Let U be the set of all upper bounds for X. Since X is bounded above, $U \neq \emptyset$. If $x \in X$ and $u \in U, x \leq u$ since u is an upper bound for X. So

$$
x \leq u \forall x \in X, u \in U
$$

By the Completeness Axiom,

$$
\exists \alpha \in \mathbf{R} \text { s.t. } x \leq \alpha \leq u \quad \forall x \in X, u \in U
$$

α is an upper bound for X, and it is less than or equal to every other upper bound for X, so it is the least upper bound for X,
so $\sup X=\alpha \in \mathbf{R}$. The case in which X is bounded below is similar. Thus, the Supremum Property holds.

Conversely, assume the Supremum Property. Suppose $L, H \subseteq \mathbf{R}$, $L \neq \emptyset \neq H$, and

$$
\ell \leq h \forall \ell \in L, h \in H
$$

Since $L \neq \emptyset$ and L is bounded above (by any element of H), $\alpha=\sup L$ exists and is real. By the definition of supremum, α is an upper bound for L, so

$$
\ell \leq \alpha \forall \ell \in L
$$

Suppose $h \in H$. Then h is an upper bound for L, so by the definition of supremum, $\alpha \leq h$. Therefore, we have shown that

$$
\ell \leq \alpha \leq h \forall \ell \in L, h \in H
$$

so the Completeness Axiom holds.

Archimedean Property

Theorem 3 (Archimedean Property, Theorem $6.10+\ldots$).

$$
\forall x, y \in \mathbf{R}, y>0 \exists n \in \mathbf{N} \text { s.t. } n y=\underbrace{(y+\cdots+y)}_{n \text { times }}>x
$$

Proof. Exercise. This is a nice exercise in proof by contradiction, using the Supremum Property.

Intermediate Value Theorem

Theorem 4 (Intermediate Value Theorem). Suppose $f:[a, b] \rightarrow$ \mathbf{R} is continuous, and $f(a)<d<f(b)$. Then there exists $c \in(a, b)$ such that $f(c)=d$.

Proof. Later, we will give a slick proof. Here, we give a barehands proof using the Supremum Property. Let

$$
B=\{x \in[a, b]: f(x)<d\}
$$

$a \in B$, so $B \neq \emptyset ; B \subseteq[a, b]$, so B is bounded above. By the Supremum Property, $\sup B$ exists and is real so let $c=\sup B$. Since $a \in B, c \geq a$. $B \subseteq[a, b]$, so $c \leq b$. Therefore, $c \in[a, b]$.

We claim that $f(c)=d$. If not, suppose $f(c)<d$. Then since $f(b)>d, c \neq b$, so $c<b$. Let $\varepsilon=\frac{d-f(c)}{2}>0$. Since f is continuous at c, there exists $\delta>0$ such that

$$
\left.\begin{array}{rl}
|x-c|<\delta & \Rightarrow|f(x)-f(c)|
\end{array}\right)<\varepsilon \quad \begin{aligned}
& <f(c)+\varepsilon \\
& \Rightarrow \quad f(x) \\
& =f(c)+\frac{d-f(c)}{2} \\
& =\frac{f(c)+d}{2} \\
& <\frac{d+d}{2} \\
& =d
\end{aligned}
$$

so $(c, c+\delta) \subseteq B$, so $c \neq \sup B$, contradiction.

Suppose $f(c)>d$. Then since $f(a)<d, a \neq c$, so $c>a$. Let $\varepsilon=\frac{f(c)-d}{2}>0$. Since f is continuous at c, there exists $\delta>0$ such that

$$
\left.\begin{array}{rl}
|x-c|<\delta & \Rightarrow|f(x)-f(c)|
\end{array}\right)<\varepsilon \quad \begin{aligned}
\Rightarrow(x) & >f(c)-\varepsilon \\
& =f(c)-\frac{f(c)-d}{2} \\
& =\frac{f(c)+d}{2} \\
& \otimes \frac{d+d}{2} \\
& =d^{\prime}
\end{aligned}
$$

so $(c-\delta, c+\delta) \cap B=\emptyset$. So either there exists $x \in B$ with $x \geq c+\delta$ (in which case c is not an upper bound for B) or $c-\delta$ is an upper bound for B (in which case c is not the least upper bound for B); in either case, $c \neq \sup B$, contradiction.

$$
f(c)>d \Rightarrow \exists \delta>0 \text { s.t. } f(x)>d \quad \forall x \in(c-\delta, c+\delta)
$$

in either cuse, $c \neq \sup B$

Since $f(c) \nless d, f(c) \ngtr d$, and the order is complete, $f(c)=d$. Since $f(a)<d$ and $f(b)>d, a \neq c \neq b$, so $c \in(a, b)$.

Corollary 1. There exists $x \in \mathbf{R}$ such that $x^{2}=2$.

Proof. Let $f(x)=x^{2}$, for $x \in[0,2] . f$ is continuous (Why?). $f(0)=0<2$ and $f(2)=4>2$, so by the Intermediate Value Theorem, there exists $c \in(0,2)$ such that $f(c)=2$, i.e. such that $c^{2}=2$.

