Econ 204 2019

Lecture 2

Outline

1. Cardinality (cont.)
2. Algebraic Structures: Fields and Vector Spaces
3. Axioms for \mathbb{R}
4. Sup, Inf, and the Supremum Property
5. Intermediate Value Theorem
Cardinality (cont.)

Notation: Given a set A, 2^A is the set of all subsets of A. This is the “power set” of A, also denoted $P(A)$.

Important example of an uncountable set:

Theorem 1 (Cantor). $2^\mathbb{N}$, *the set of all subsets of \mathbb{N}, is not countable.*

Proof. Suppose $2^\mathbb{N}$ is countable. Then there is a bijection $f : \mathbb{N} \to 2^\mathbb{N}$. Let $A_m = f(m)$. We create an infinite matrix, whose
$(m, n)^{th}$ entry is 1 if $n \in A_m$, 0 otherwise:

<table>
<thead>
<tr>
<th></th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>$A_1 = \emptyset$</td>
<td>0</td>
</tr>
<tr>
<td>$A_2 = {1}$</td>
<td>1</td>
</tr>
<tr>
<td>$2^N A_3 = {1, 2, 3}$</td>
<td>1</td>
</tr>
<tr>
<td>$A_4 = \mathbb{N}$</td>
<td>1</td>
</tr>
<tr>
<td>$A_5 = 2\mathbb{N}$</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Now, on the main diagonal, change all the 0s to 1s and vice
versa:

<table>
<thead>
<tr>
<th></th>
<th>\mathbb{N}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>\emptyset</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>A_2</td>
<td>{1}</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>$2^\mathbb{N}$ \ A_3</td>
<td>{1,2,3}</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>A_4</td>
<td>\mathbb{N}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>A_5</td>
<td>$2^\mathbb{N}$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>
Let
\[t_{mn} = \begin{cases}
1 & \text{if } n \in A_m \\
0 & \text{if } n \notin A_m
\end{cases} \]
Let \(A = \{m \in \mathbb{N} : t_{mm} = 0\} \).

\[m \in A \iff t_{mm} = 0 \iff m \notin A_m \]

1 \in A \iff 1 \notin A_1 \text{ so } A \neq A_1
2 \in A \iff 2 \notin A_2 \text{ so } A \neq A_2
\vdots
m \in A \iff m \notin A_m \text{ so } A \neq A_m

Therefore, \(A \neq f(m) \) for any \(m \), so \(f \) is not onto, contradiction. \(\square \)
Some Additional Facts About Cardinality

Recall we let $|A|$ denote the cardinality of a set A.

- if A is numerically equivalent to $\{1, \ldots, n\}$ for some $n \in \mathbb{N}$, then $|A| = n$.

- A and B are numerically equivalent if and only if $|A| = |B|$

- if $|A| = n$ and A is a proper subset of B (that is, $A \subseteq B$ and $A \neq B$) then $|A| < |B|$
• if A is countable and B is uncountable, then

$$n < |A| < |B| \quad \forall n \in \mathbb{N}$$

• if $A \subseteq B$ then $|A| \leq |B|$

• if $r : A \to B$ is 1-1, then $|A| \leq |B|$

• if B is countable and $A \subseteq B$, then A is at most countable, that is, A is either empty, finite, or countable

• if $r : A \to B$ is 1-1 and B is countable, then A is at most countable
Algebraic Structures: Fields

Definition 1. A field $\mathcal{F} = (F, +, \cdot)$ is a 3-tuple consisting of a set F and two binary operations $+, \cdot : F \times F \to F$ such that

1. **Associativity of $+$:**
\[
\forall \alpha, \beta, \gamma \in F, \ (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)
\]

2. **Commutativity of $+$:**
\[
\forall \alpha, \beta \in F, \ \alpha + \beta = \beta + \alpha
\]

3. **Existence of additive identity:**
\[
\exists ! 0 \in F \ s.t. \ \forall \alpha \in F, \ \alpha + 0 = 0 + \alpha = \alpha
\]
4. Existence of additive inverse:
\[\forall \alpha \in F \, \exists! (-\alpha) \in F \text{ s.t. } \alpha + (-\alpha) = (-\alpha) + \alpha = 0 \]
Define \(\alpha - \beta = \alpha + (-\beta) \)

5. Associativity of \(\cdot \):
\[\forall \alpha, \beta, \gamma \in F, \ (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma) \]

6. Commutativity of \(\cdot \):
\[\forall \alpha, \beta \in F, \ \alpha \cdot \beta = \beta \cdot \alpha \]

7. Existence of multiplicative identity:
\[\exists! 1 \in F \text{ s.t. } 1 \neq 0 \text{ and } \forall \alpha \in F, \ \alpha \cdot 1 = 1 \cdot \alpha = \alpha \]
8. Existence of multiplicative inverse:

\[\forall \alpha \in F \text{ s.t. } \alpha \neq 0 \exists! \alpha^{-1} \in F \text{ s.t. } \alpha \cdot \alpha^{-1} = \alpha^{-1} \cdot \alpha = 1 \]

Define \(\frac{\alpha}{\beta} = \alpha \beta^{-1} \).

9. Distributivity of multiplication over addition:

\[\forall \alpha, \beta, \gamma \in F, \alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma \]
Fields

Examples:

- \mathbb{R}

- $\mathbb{C} = \{x + iy : x, y \in \mathbb{R}\}$. $i^2 = -1$, so

$$ (x+iy)(w+iz) = xw + ixz + iwy + i^2yz = (xw - yz) + i(xz + wy) $$

- \mathbb{Q}: $\mathbb{Q} \subset \mathbb{R}$, $\mathbb{Q} \neq \mathbb{R}$. \mathbb{Q} is closed under $+$, \cdot, taking additive and multiplicative inverses; the field axioms are inherited from the field axioms on \mathbb{R}, so \mathbb{Q} is a field.
• \(\mathbb{N} \) is not a field: no additive identity.

• \(\mathbb{Z} \) is not a field; no multiplicative inverse for 2.

• \(\mathbb{Q}(\sqrt{2}) \), the smallest field containing \(\mathbb{Q} \cup \{ \sqrt{2} \} \). Take \(\mathbb{Q} \), add \(\sqrt{2} \), and close up under +, ·, taking additive and multiplicative inverses. One can show

\[
\mathbb{Q}(\sqrt{2}) = \{ q + r\sqrt{2} : q, r \in \mathbb{Q} \}
\]

For example,

\[
(q + r\sqrt{2})^{-1} = \frac{q}{q^2 - 2r^2} - \frac{r}{q^2 - 2r^2}\sqrt{2}
\]
• A finite field: $F_2 = (\{0, 1\}, +, \cdot)$ where

\[
\begin{align*}
0 + 0 &= 0 & 0 \cdot 0 &= 0 \\
0 + 1 &= 1 + 0 = 1 & 0 \cdot 1 &= 1 \cdot 0 = 0 \\
1 + 1 &= 0 & 1 \cdot 1 &= 1
\end{align*}
\]

("Arithmetic mod 2")
Vector Spaces

Definition 2. A vector space is a 4-tuple \((V, F, +, \cdot)\) where \(V\) is a set of elements, called vectors, \(F\) is a field, \(+\) is a binary operation on \(V\) called vector addition, and \(\cdot : F \times V \to V\) is called scalar multiplication, satisfying

1. Associativity of \(+\):
\[
\forall x, y, z \in V, \quad (x + y) + z = x + (y + z)
\]

2. Commutativity of \(+\):
\[
\forall x, y \in V, \quad x + y = y + x
\]
3. **Existence of vector additive identity:**

\[\exists ! 0 \in V \text{ s.t. } \forall x \in V, \ x + 0 = 0 + x = x \]

4. **Existence of vector additive inverse:**

\[\forall x \in V \ \exists ! (-x) \in V \text{ s.t. } x + (-x) = (-x) + x = 0 \]

Define \(x - y \) to be \(x + (-y) \).

5. **Distributivity of scalar multiplication over vector addition:**

\[\forall \alpha \in F, x, y \in V, \ \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y \]

6. **Distributivity of scalar multiplication over scalar addition:**

\[\forall \alpha, \beta \in F, x \in V \ (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x \]
7. **Associativity of \(\cdot \):**

\[\forall \alpha, \beta \in F, x \in V \quad (\alpha \cdot \beta) \cdot x = \alpha \cdot (\beta \cdot x) \]

8. **Multiplicative identity:**

\[\forall x \in V \quad 1 \cdot x = x \]

(*Note that 1 is the multiplicative identity in \(F \); 1 \(\notin \) \(V \))
Vector Spaces

Examples:

1. \mathbb{R}^n over \mathbb{R}.

2. \mathbb{R} is a vector space over \mathbb{Q}:

 (scalar multiplication) $q \cdot r = qr$ (product in \mathbb{R})

 \mathbb{R} is not finite-dimensional over \mathbb{Q}, i.e. \mathbb{R} is not \mathbb{Q}^n for any $n \in \mathbb{N}$.

3. \mathbb{R} is a vector space over \mathbb{R}.
4. \(\mathbb{Q}(\sqrt{2}) \) is a vector space over \(\mathbb{Q} \). As a vector space, it is \(\mathbb{Q}^2 \); as a field, you need to take the funny field multiplication.

5. \(\mathbb{Q}(\sqrt[3]{2}) \), as a vector space over \(\mathbb{Q} \), is \(\mathbb{Q}^3 \).

6. \((F_2)^n\) is a \textit{finite} vector space over \(F_2 \).

7. \(C([0,1]) \), the space of all continuous real-valued functions on \([0,1]\), is a vector space over \(\mathbb{R} \).

\begin{itemize}
 \item vector addition:
 \[
 (f + g)(t) = f(t) + g(t)
 \]
\end{itemize}
Note we define the function $f + g$ by specifying what value it takes for each $t \in [0, 1]$.

- scalar multiplication:
 \[(\alpha f)(t) = \alpha(f(t)) \]

- vector additive identity: 0 is the function which is identically zero: $0(t) = 0$ for all $t \in [0, 1]$.

- vector additive inverse:
 \[(-f)(t) = -(f(t)) \]
Axioms for \(\mathbb{R} \)

1. \(\mathbb{R} \) is a field with the usual operations +, \(\cdot \), additive identity 0, and multiplicative identity 1.

2. **Order Axiom:** There is a complete ordering \(\leq \), i.e. \(\leq \) is reflexive, transitive, antisymmetric \((\alpha \leq \beta, \beta \leq \alpha \Rightarrow \alpha = \beta)\) with the property that

\[
\forall \alpha, \beta \in \mathbb{R} \text{ either } \alpha \leq \beta \text{ or } \beta \leq \alpha
\]

The order is compatible with + and \(\cdot \), i.e.

\[
\forall \alpha, \beta, \gamma \in \mathbb{R} \left\{ \begin{array}{l}
\alpha \leq \beta \Rightarrow \alpha + \gamma \leq \beta + \gamma \\
\alpha \leq \beta, 0 \leq \gamma \Rightarrow \alpha \gamma \leq \beta \gamma
\end{array} \right.
\]

\(\alpha \geq \beta \) means \(\beta \leq \alpha \). \(\alpha < \beta \) means \(\alpha \leq \beta \) and \(\alpha \neq \beta \).
Completeness Axiom

3. **Completeness Axiom:** Suppose $L, H \subseteq \mathbb{R}$, $L \neq \emptyset \neq H$ satisfy

$$\ell \leq h \quad \forall \ell \in L, h \in H$$

Then

$$\exists \alpha \in \mathbb{R} \text{ s.t. } \ell \leq \alpha \leq h \quad \forall \ell \in L, h \in H$$

The Completeness Axiom differentiates \mathbb{R} from \mathbb{Q}: \mathbb{Q} satisfies all the axioms for \mathbb{R} except the Completeness Axiom.
Sups, Infs, and the Supremum Property

Definition 3. Suppose \(X \subseteq \mathbb{R} \). We say \(u \) is an upper bound for \(X \) if

\[
x \leq u \ \forall x \in X
\]

and \(\ell \) is a lower bound for \(X \) if

\[
\ell \leq x \ \forall x \in X
\]

\(X \) is bounded above if there is an upper bound for \(X \), and bounded below if there is a lower bound for \(X \).
Definition 4. Suppose X is bounded above. The supremum of X, written sup X, is the least upper bound for X, i.e. sup X satisfies

$$\sup X \geq x \quad \forall x \in X \text{ (sup } X \text{ is an upper bound)}$$

$$\forall y < \sup X \exists x \in X \text{ s.t. } x > y \text{ (there is no smaller upper bound)}$$

Analogously, suppose X is bounded below. The infimum of X, written inf X, is the greatest lower bound for X, i.e. inf X satisfies

$$\inf X \leq x \quad \forall x \in X \text{ (inf } X \text{ is a lower bound)}$$

$$\forall y > \inf X \exists x \in X \text{ s.t. } x < y \text{ (there is no greater lower bound)}$$

If X is not bounded above, write sup $X = \infty$. If X is not bounded below, write inf $X = -\infty$. Convention: sup $\emptyset = -\infty$, inf $\emptyset = +\infty$.
The Supremum Property

The Supremum Property: Every nonempty set of real numbers that is bounded above has a supremum, which is a real number. Every nonempty set of real numbers that is bounded below has an infimum, which is a real number.

Note: \(\sup X \) need not be an element of \(X \). For example, \(\sup(0,1) = 1 \not\in (0,1) \).
The Supremum Property

Theorem 2 (Theorem 6.8, plus . . .). *The Supremum Property and the Completeness Axiom are equivalent.*

Proof. Assume the Completeness Axiom. Let $X \subseteq \mathbb{R}$ be a nonempty set that is bounded above. Let U be the set of all upper bounds for X. Since X is bounded above, $U \neq \emptyset$. If $x \in X$ and $u \in U$, $x \leq u$ since u is an upper bound for X. So

$$x \leq u \forall x \in X, u \in U$$

By the Completeness Axiom,

$$\exists \alpha \in \mathbb{R} \text{ s.t. } x \leq \alpha \leq u \forall x \in X, u \in U$$

α is an upper bound for X, and it is less than or equal to every other upper bound for X, so it is the least upper bound for X.

13
so \(\sup X = \alpha \in \mathbb{R} \). The case in which \(X \) is bounded below is similar. Thus, the Supremum Property holds.

Conversely, assume the Supremum Property. Suppose \(L, H \subseteq \mathbb{R}, L \neq \emptyset \neq H \), and

\[
\ell \leq h \ \forall \ell \in L, h \in H
\]

Since \(L \neq \emptyset \) and \(L \) is bounded above (by any element of \(H \)), \(\alpha = \sup L \) exists and is real. By the definition of supremum, \(\alpha \) is an upper bound for \(L \), so

\[
\ell \leq \alpha \ \forall \ell \in L
\]

Suppose \(h \in H \). Then \(h \) is an upper bound for \(L \), so by the definition of supremum, \(\alpha \leq h \). Therefore, we have shown that

\[
\ell \leq \alpha \leq h \ \forall \ell \in L, h \in H
\]

so the Completeness Axiom holds. \(\square \)
Archimedeian Property

Theorem 3 (Archimedeian Property, Theorem 6.10 + ...).

\[\forall x, y \in \mathbb{R}, y > 0 \ \exists n \in \mathbb{N} \text{ s.t. } ny = (y + \cdots + y) > x \]

Proof. Exercise. This is a nice exercise in proof by contradiction, using the Supremum Property. \(\square\)
Theorem 4 (Intermediate Value Theorem). Suppose $f : [a, b] \to \mathbb{R}$ is continuous, and $f(a) < d < f(b)$. Then there exists $c \in (a, b)$ such that $f(c) = d$.

Proof. Later, we will give a slick proof. Here, we give a barehands proof using the Supremum Property. Let

$$B = \{ x \in [a, b] : f(x) < d \}$$

$a \in B$, so $B \neq \emptyset$; $B \subseteq [a, b]$, so B is bounded above. By the Supremum Property, sup B exists and is real so let $c = \sup B$. Since $a \in B$, $c \geq a$. $B \subseteq [a, b]$, so $c \leq b$. Therefore, $c \in [a, b]$.

We claim that $f(c) = d$. If not, suppose $f(c) < d$. Then since $f(b) > d$, $c \neq b$, so $c < b$. Let $\varepsilon = \frac{d - f(c)}{2} > 0$. Since f is continuous at c, there exists $\delta > 0$ such that

$$ |x - c| < \delta \implies |f(x) - f(c)| < \varepsilon $$

$$ \implies f(x) < f(c) + \varepsilon $$

$$ = f(c) + \frac{d - f(c)}{2} $$

$$ = \frac{f(c) + d}{2} $$

$$ < \frac{d + d}{2} $$

$$ = d $$

so $(c, c + \delta) \subseteq B$, so $c \neq \sup B$, contradiction.
Suppose \(f(c) > d \). Then since \(f(a) < d, \ a \neq c, \) so \(c > a \). Let
\[\varepsilon = \frac{f(c) - d}{2} > 0. \]
Since \(f \) is continuous at \(c \), there exists \(\delta > 0 \) such that
\[
|x - c| < \delta \quad \Rightarrow \quad |f(x) - f(c)| < \varepsilon \\
\Rightarrow \quad f(x) > f(c) - \varepsilon \\
= f(c) - \frac{f(c) - d}{2} \\
= \frac{f(c) + d}{2} \\
> \frac{d + d}{2} \\
= d
\]
so \((c - \delta, c + \delta) \cap B = \emptyset \). So either there exists \(x \in B \) with \(x \geq c + \delta \) (in which case \(c \) is not an upper bound for \(B \)) or \(c - \delta \) is an upper bound for \(B \) (in which case \(c \) is not the least upper bound for \(B \)); in either case, \(c \neq \sup B \), contradiction.
Since $f(c) \not< d$, $f(c) \not> d$, and the order is complete, $f(c) = d$.

Since $f(a) < d$ and $f(b) > d$, $a \neq c \neq b$, so $c \in (a, b)$. \qed
Corollary 1. There exists $x \in \mathbb{R}$ such that $x^2 = 2$.

Proof. Let $f(x) = x^2$, for $x \in [0, 2]$. f is continuous (Why?). $f(0) = 0 < 2$ and $f(2) = 4 > 2$, so by the Intermediate Value Theorem, there exists $c \in (0, 2)$ such that $f(c) = 2$, i.e. such that $c^2 = 2$. \qed