
Economics 204 Summer/Fall 2019
Lecture 10–Friday August 9, 2019

Diagonalization of Symmetric Real Matrices (from Handout)

Definition 1 Let

δij =

{

1 if i = j
0 if i 6= j

A basis V = {v1, . . . , vn} of Rn is orthonormal if vi · vj = δij.

In other words, a basis is orthonormal if each basis element has unit length ( ‖vi‖2 = vi·vi = 1
for each i), and distinct basis elements are perpendicular (vi · vj = 0 for i 6= j).

Remark: Suppose that x =
∑n

j=1 αjvj where {v1, . . . , vn} is an orthonormal basis of Rn.
Then

x · vk =





n
∑

j=1

αjvj



 · vk

=
n
∑

j=1

αj(vj · vk)

=
n
∑

j=1

αjδjk

= αk

so

x =
n
∑

j=1

(x · vj)vj

Example: The standard basis of Rn is orthonormal.

Recall that for a real n × m matrix A, A> denotes the transpose of A: the (i, j)th entry
of A> is the (j, i)th entry of A. So the ith row of A> is the ith column of A.

Definition 2 A real n × n matrix A is unitary if A> = A−1.

Theorem 3 A real n×n matrix A is unitary if and only if the columns of A are orthonormal.

Proof: Let vj denote the jth column of A.

A> = A−1 ⇐⇒ A>A = I

⇐⇒ vi · vj = δij ∀i, j

⇐⇒ {v1, . . . , vn} is orthonormal

1



If A is unitary, let V be the set of columns of A and W be the standard basis of Rn.
Since A is unitary, it is invertible, so V is a basis of Rn.

A> = A−1 = MtxV,W (id)

Since V is orthonormal, the transformation between bases W and V preserves all geometry,
including lengths and angles.

Theorem 4 Let T ∈ L(Rn,Rn) and W be the standard basis of Rn. Suppose that MtxW (T )
is symmetric. Then the eigenvectors of T are all real, and there is an orthonormal basis
V = {v1, . . . , vn} of Rn consisting of eigenvectors of T , so that MtxW (T ) is diagonalizable:

MtxW (T ) = MtxW,V (id) · MtxV (T ) · MtxV,W (id)

where MtxV T is diagonal and the change of basis matrices MtxV,W (id) and MtxW,V (id) are
unitary.

Proof: (Sketch) The proof of the theorem requires a lengthy digression into the linear algebra
of complex vector spaces. Here is a very brief outline.

1. Let M = MtxW (T ).

2. The inner product in Cn is defined as follows:

x · y =
n
∑

j=1

xj · yj

where c̄ denotes the complex conjugate of any c ∈ C; note that this implies that
x · y = y · x. The usual inner product in Rn is the restriction of this inner product on
Cn to Rn.

3. Given any complex matrix A, define A∗ to be the matrix whose (i, j)th entry is aji;
in other words, A∗ is formed by taking the complex conjugate of each element of the
transpose of A. It is easy to verify that given x, y ∈ Cn and a complex n × n matrix
A, Ax · y = x ·A∗y. Since M is real and symmetric, M∗ = M .

4. If M is real and symmetric, and λ ∈ C is an eigenvalue of M , with eigenvector x ∈ Cn,
then

λ|x|2 = λ(x · x)

= (λx) · x
= (Mx) · x
= x · (M∗x)
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= x · (Mx)

= x · (λx)

= (λx) · x
= λ(x · x)

= λ|x|2
= λ̄|x|2

which proves that λ = λ̄, hence λ ∈ R.

5. If M is real (not necessarily symmetric) and λ ∈ R is an eigenvalue, then det(M−λI) =
0 ⇒ ∃v ∈ Rn s.t. (M − λI)v = 0, so there is at least one real eigenvector. Symmetry
implies that, if λ has multiplicity m, there are m independent real eigenvectors corre-
sponding to λ (but unfortunately we don’t have time to show this). Thus, there is a
basis of eigenvectors, hence M is diagonalizable over R.

6. If M is real and symmetric, eigenvectors corresponding to distinct eigenvalues are
orthogonal: Suppose that Mx = λx and My = ρy with ρ 6= λ. Then

λ(x · y) = (λx) · y
= (Mx) · y
= (Mx)>y

=
(

x>M>
)

y

=
(

x>M
)

y

= x>(My)

= x>(ρy)

= x · (ρy)

= ρ(x · y)

so (λ − ρ)(x · y) = 0; since λ − ρ 6= 0, we must have x · y = 0.

7. Using the Gram-Schmidt method, we can get an orthonormal basis of eigenvectors:

• Let Xλ = {x ∈ Rn : Mx = λx}, the set of all eigenvectors corresponding to λ.
Notice that if Mx = λx and My = λy, then

M(αx + βy) = αMx + βMy = αλx + βλy = λ(αx + βy)

so Xλ is a vector subspace. Thus, given any basis of Xλ, we wish to find an
orthonormal basis of Xλ; all elements of this orthonormal basis will be eigenvectors
corresponding to λ.

• Suppose Xλ is m-dimensional and we are given independent vectors x1, . . . , xm ∈
Xλ. The Gram-Schmidt method finds an orthonormal basis {v1, . . . , vm} for Xλ.

• Let v1 = x1

|x1|
. Note that |v1| = 1.
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• Suppose we have found an orthonormal set {v1, . . . , vk} such that span {v1, . . . , vk} =
span {x1, . . . , xk}, with k < m. Let

yk+1 = xk+1 −
k
∑

j=1

(xk+1 · vj)vj, vk+1 =
yk+1

|yk+1|

•

span {v1, . . . , vk+1} = span {v1, . . . , vk, vk+1}
= span {v1, . . . , vk, yk+1}
= span {v1, . . . , vk, xk+1}
= span {x1, . . . , xk, xk+1}

• For i = 1, . . . , k,

yk+1 · vi =



xk+1 −
k
∑

j=1

(xk+1 · vj)vj



 · vi

= xk+1 · vi −
K
∑

j=1

(xk+1 · vj)(vj · vi)

= xk+1 · vi −
K
∑

j=1

(xk+1 · vj)δij

= xk+1 · vi − xk+1 · vi

= 0

vk+1 · vi =
yk+1 · vi

|yk+1|

=
0

|yk+1|
= 0

|vk+1| =
|yk+1|
|yk+1|

= 1

Application to Quadratic Forms

Consider a quadratic form

f(x1, . . . , xn) =
n
∑

i=1

αiix
2
i +

∑

i<j

βijxixj (1)

Let

αij =

{

βij

2
if i < j

βji

2
if i > j
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Let

A =









α11 · · · α1n

...
. . .

...
αn1 · · · αnn









so
f(x) = x>Ax

Example: Let
f(x) = αx2

1 + βx1x2 + γx2
2

Let

A =

(

α β

2
β

2
γ

)

so A is symmetric and

(x1, x2)

(

α β

2
β

2
γ

)(

x1

x2

)

= (x1, x2)

(

αx1 + β

2
x2

β

2
x1 + γx2

)

= αx2
1 + βx1x2 + γx2

2

= f(x)

Returning to the general quadratic form in Equation (1), A is symmetric, so let V =
{v1, . . . , vn} be an orthonormal basis of eigenvectors of A with corresponding eigenvalues
λ1, . . . , λn. Then

A = U>DU

where D =













λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn













and U = MtxV,W (id) is unitary

The columns of U> (the rows of U) are the coordinates of v1, . . . , vn, expressed in terms of
the standard basis W .

Given x ∈ Rn, recall

x =
n
∑

i=1

γivi where γi = x · vi

Then

f(x) = f
(

∑

γivi

)
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=
(

∑

γivi

)>
A
(

∑

γivi

)

=
(

∑

γivi

)>
U>DU

(

∑

γivi

)

=
(

U
∑

γivi

)>
D
(

U
∑

γivi

)

=
(

∑

γiUvi

)>
D
(

∑

γiUvi

)

= (γ1, . . . , γn)D









γ1
...

γn









=
∑

λiγ
2
i

The equation for the level sets of f is

n
∑

i=1

λiγ
2
i = C

• If λi ≥ 0 for all i, the level set is an ellipsoid, with principal axes in the directions

v1, . . . , vn. The length of the principal axis along vi is
√

C/λi if C ≥ 0 (if λi = 0, the

level set is a degenerate ellipsoid with principal axis of infinite length in that direction).
The level set is empty if C < 0. See Figure 1.

• If λi ≤ 0 for all i, the level set is an ellipsoid, with principal axes in the directions

v1, . . . , vn. The length of the principal axis along vi is
√

C/λi if C ≤ 0 (if λi = 0, the

level set is a degenerate ellipsoid with principal axis of infinite length in that direction).
The level set is empty if C > 0.

• If λi > 0 for some i and λj < 0 for some j, the level set is a hyperboloid. For example,
suppose n = 2, λ1 > 0, λ2 < 0. The equation is

C = λ1γ
2
1 + λ2γ

2
2

=
(

√

λ1γ1 +
√

|λ2|γ2

)(

√

λ1γ1 −
√

|λ2|γ2

)

This is a hyperbola with asymptotes

0 =
√

λ1γ1 +
√

|λ2|γ2

⇒ γ1 = −
√

|λ2|
λ1

γ2

0 =
(

√

λ1γ1 −
√

|λ2|γ2

)

⇒ γ1 =

√

|λ2|
λ1

γ2

See Figure 2. This proves the following corollary of Theorem 4.
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Corollary 5 Consider the quadratic form (1).

1. f has a global minimum at 0 if and only if λi ≥ 0 for all i; the level sets of f are
ellipsoids with principal axes aligned with the orthonormal eigenvectors v1, . . . , vn.

2. f has a global maximum at 0 if and only if λi ≤ 0 for all i; the level sets of f are
ellipsoids with principal axes aligned with the orthonormal eigenvectors v1, . . . , vn.

3. If λi < 0 for some i and λj > 0 for some j, then f has a saddle point at 0; the level
sets of f are hyperboloids with principal axes aligned with the orthonormal eigenvectors
v1, . . . , vn.

Section 3.4. Linear Maps between Normed Spaces

Definition 6 Suppose X, Y are normed vector spaces and T ∈ L(X, Y ). We say T is
bounded if

∃β ∈ R s.t. ‖T (x)‖Y ≤ β‖x‖X ∀x ∈ X

Note this implies that T is Lipschitz with constant β.

Theorem 7 (Thms. 4.1, 4.3) Let X, Y be normed vector spaces and T ∈ L(X, Y ). Then

T is continuous at some point x0 ∈ X

⇐⇒ T is continuous at every x ∈ X

⇐⇒ T is uniformly continuous on X

⇐⇒ T is Lipschitz

⇐⇒ T is bounded

Proof: Suppose T is continuous at x0. Fix ε > 0. Then there exists δ > 0 such that

‖z − x0‖ < δ ⇒ ‖T (z)− T (x0)‖ < ε

Now suppose x is any element of X. If ‖y−x‖ < δ, let z = y−x+x0, so ‖z−x0‖ = ‖y−x‖ < δ.

‖T (y)− T (x)‖
= ‖T (y − x)‖
= ‖T (y − x + x0 − x0))‖
= ‖T (z) − T (x0)‖
< ε

which proves that T is continuous at every x, and uniformly continuous.
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We claim that T is bounded if and only if T is continuous at 0. Suppose T is not bounded.
Then

∃{xn} s.t. ‖T (xn)‖ > n‖xn‖ ∀n

Note that xn 6= 0. Let ε = 1. Fix δ > 0 and choose n such that 1
n

< δ. Let

x′
n =

xn

n‖xn‖

‖x′
n‖ =

‖xn‖
n‖xn‖

=
1

n
< δ

‖T (x′
n) − T (0)‖ = ‖T (x′

n)‖

=
1

n‖xn‖
‖T (xn)‖

>
n‖xn‖
n‖xn‖

= 1

= ε

Since this is true for every δ, T is not continuous at 0. Therefore, T continuous at 0 implies
T is bounded. Now, suppose T is bounded, so find M such that ‖T (x)‖ ≤ M‖x‖ for every
x ∈ X. Given ε > 0, let δ = ε/M . Then

‖x − 0‖ < δ ⇒ ‖x‖ < δ

⇒ ‖T (x)− T (0)‖ = ‖T (x)‖ < Mδ

⇒ ‖T (x)− T (0)‖ < ε

so T is continuous at 0.

Thus, we have shown that continuity at some point x0 implies uniform continuity, which
implies continuity at every point, which implies T is continuous at 0, which implies that T
is bounded, which implies that T is continuous at 0, which implies that T is continuous at
some x0, so all of the statements except possibly the Lipschitz statement are equivalent.

Suppose T is bounded, with constant M . Then

‖T (x)− T (y)‖ = ‖T (x− y)‖
≤ M‖x − y‖

so T is Lipschitz with constant M ; conversely, if T is Lipschitz with constant M , then T is
bounded with constant M . So all the statements are equivalent.

Every linear map on a finite-dimensional normed vector space is bounded (and thus contin-
uous, uniformly continuous, and Lipschitz continuous).
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Theorem 8 (Thm. 4.5) Let X, Y be normed vector spaces with dimX = n. Every
T ∈ L(X, Y ) is bounded.

Proof: See de la Fuente.

Definition 9 A topological isomorphism between normed vector spaces X and Y is a linear
transformation T ∈ L(X, Y ) that is invertible (one-to-one, onto), continuous, and has a
continuous inverse.

Two normed vector spaces X and Y are topologically isomorphic if there is a topological
isomorphism T : X → Y .

Suppose X and Y are normed vector spaces. We define

B(X, Y ) = {T ∈ L(X, Y ) : T is bounded}

‖T‖B(X,Y ) = sup

{

‖T (x)‖Y

‖x‖X

, x ∈ X, x 6= 0

}

= sup{‖T (x)‖Y : ‖x‖X = 1}

Theorem 10 (Thm. 4.8) Let X, Y be normed vector spaces. Then

(

B(X, Y ), ‖ · ‖B(X,Y )

)

is a normed vector space.

Proof: See de la Fuente.

Theorem 11 (Thm. 4.9) Let T ∈ L(Rn,Rm) (= B(Rn,Rm)) with matrix A = (aij) with
respect to the standard bases. Let

M = max{|aij| : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

Then
M ≤ ‖T‖ ≤ M

√
mn

Proof: See de la Fuente.

Theorem 12 (Thm. 4.10) Let R ∈ L(Rm,Rn) and S ∈ L(Rn,Rp). Then

‖S ◦ R‖ ≤ ‖S‖‖R‖
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Proof: See de la Fuente.

Define
Ω(Rn) = {T ∈ L(Rn,Rn) : T is invertible}

Theorem 13 (Thm. 4.11’) Suppose T ∈ L(Rn,Rn) and E is the standard basis of Rn.
Then

T is invertible

⇔ kerT = {0}
⇔ det (MtxE(T )) 6= 0

⇔ det (MtxV,V (T )) 6= 0 for every basis V

⇔ det (MtxV,W (T )) 6= 0 for every pair of bases V, W

Theorem 14 (Thm. 4.12) If S, T ∈ Ω(Rn), then S ◦ T ∈ Ω(Rn) and

(S ◦ T )−1 = T−1 ◦ S−1

Theorem 15 (Thm. 4.14) Let S, T ∈ L(Rn,Rn). If T is invertible and

‖T − S‖ <
1

‖T−1‖

then S is invertible. In particular, Ω(Rn) is open in L(Rn,Rn) = B(Rn,Rn).

Proof: See de la Fuente.

Theorem 16 (4.15) The function (·)−1 : Ω(Rn) → Ω(Rn) that assigns T−1 to each T ∈
Ω(Rn) is continuous.

Proof: See de la Fuente.
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Figure 1: If λ1, λ2 > 0 and C > 0, the level set is an ellipsoid, with principal axes in the

directions v1, v2. The length of the principal axis along vi is
√

C/λi.
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Figure 2: If λ1 > 0 and λ2 < 0, the level set is a hyperbola with asymptotes γ1 =
√

|λ2|
λ1

γ2.
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