Diagonalization of Symmetric Real Matrices (from Handout)

Definition 1 Let
\[\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \]
A basis \(V = \{v_1, \ldots, v_n\} \) of \(\mathbb{R}^n \) is orthonormal if \(v_i \cdot v_j = \delta_{ij} \).

In other words, a basis is orthonormal if each basis element has unit length (\(\|v_i\|^2 = v_i \cdot v_i = 1 \) for each \(i \)), and distinct basis elements are perpendicular (\(v_i \cdot v_j = 0 \) for \(i \neq j \)).

Remark: Suppose that \(x = \sum_{j=1}^{n} \alpha_j v_j \) where \(\{v_1, \ldots, v_n\} \) is an orthonormal basis of \(\mathbb{R}^n \). Then
\[
x \cdot v_k = \left(\sum_{j=1}^{n} \alpha_j v_j \right) \cdot v_k \\
= \sum_{j=1}^{n} \alpha_j (v_j \cdot v_k) \\
= \sum_{j=1}^{n} \alpha_j \delta_{jk} \\
= \alpha_k
\]
so
\[
x = \sum_{j=1}^{n} (x \cdot v_j) v_j
\]

Example: The standard basis of \(\mathbb{R}^n \) is orthonormal.

Recall that for a real \(n \times m \) matrix \(A \), \(A^\top \) denotes the transpose of \(A \): the \((i, j)\)th entry of \(A^\top \) is the \((j, i)\)th entry of \(A \). So the \(i \)th row of \(A^\top \) is the \(i \)th column of \(A \).

Definition 2 A real \(n \times n \) matrix \(A \) is unitary if \(A^\top = A^{-1} \).

Theorem 3 A real \(n \times n \) matrix \(A \) is unitary if and only if the columns of \(A \) are orthonormal.

Proof: Let \(v_j \) denote the \(j \)th column of \(A \).
\[
A^\top = A^{-1} \iff A^\top A = I \\
\iff v_i \cdot v_j = \delta_{ij} \forall i, j \\
\iff \{v_1, \ldots, v_n\} \text{ is orthonormal}
\]
If A is unitary, let V be the set of columns of A and W be the standard basis of \mathbb{R}^n. Since A is unitary, it is invertible, so V is a basis of \mathbb{R}^n.

$$A^\top = A^{-1} = Mtx_{V,W}(id)$$

Since V is orthonormal, the transformation between bases W and V preserves all geometry, including lengths and angles.

Theorem 4 Let $T \in L(\mathbb{R}^n, \mathbb{R}^n)$ and W be the standard basis of \mathbb{R}^n. Suppose that $Mtx_W(T)$ is symmetric. Then the eigenvectors of T are all real, and there is an orthonormal basis $V = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consisting of eigenvectors of T, so that $Mtx_W(T)$ is diagonalizable:

$$Mtx_W(T) = Mtx_{W,V}(id) \cdot Mtx_V(T) \cdot Mtx_{V,W}(id)$$

where $Mtx_V T$ is diagonal and the change of basis matrices $Mtx_{V,W}(id)$ and $Mtx_{W,V}(id)$ are unitary.

Proof: *(Sketch)* The proof of the theorem requires a lengthy digression into the linear algebra of complex vector spaces. Here is a very brief outline.

1. Let $M = Mtx_W(T)$.
2. The inner product in \mathbb{C}^n is defined as follows:

$$x \cdot y = \sum_{j=1}^{n} x_j \cdot \overline{y_j}$$

where \overline{c} denotes the complex conjugate of any $c \in \mathbb{C}$; note that this implies that $x \cdot y = \overline{x \cdot y}$. The usual inner product in \mathbb{R}^n is the restriction of this inner product on \mathbb{C}^n to \mathbb{R}^n.

3. Given any complex matrix A, define A^* to be the matrix whose $(i, j)^{th}$ entry is $\overline{a_{ji}}$, in other words, A^* is formed by taking the complex conjugate of each element of the transpose of A. It is easy to verify that given $x, y \in \mathbb{C}^n$ and a complex $n \times n$ matrix A, $Ax \cdot y = x \cdot A^*y$. Since M is real and symmetric, $M^* = M$.

4. If M is real and symmetric, and $\lambda \in \mathbb{C}$ is an eigenvalue of M, with eigenvector $x \in \mathbb{C}^n$, then

$$\lambda |x|^2 = \lambda (x \cdot x) = \overline{(\lambda x) \cdot x} = \overline{(Mx) \cdot x} = x \cdot (M^*x)$$
\[
\begin{align*}
= \ x \cdot (M x) \\
= \ x \cdot (\lambda x) \\
= \ (\lambda x) \cdot x \\
= \ \bar{\lambda} (x \cdot x) \\
= \ \bar{\lambda} |x|^2 \\
= \ \bar{\lambda} |x|^2
\end{align*}
\]

which proves that \(\lambda = \bar{\lambda} \), hence \(\lambda \in \mathbb{R} \).

5. If \(M \) is real (not necessarily symmetric) and \(\lambda \in \mathbb{R} \) is an eigenvalue, then \(\det(M - \lambda I) = 0 \Rightarrow \exists v \in \mathbb{R}^n \) s.t. \((M - \lambda I)v = 0 \), so there is at least one real eigenvector. Symmetry implies that, if \(\lambda \) has multiplicity \(m \), there are \(m \) independent real eigenvectors corresponding to \(\lambda \) (but unfortunately we don’t have time to show this). Thus, there is a basis of eigenvectors, hence \(M \) is diagonalizable over \(\mathbb{R} \).

6. If \(M \) is real and symmetric, eigenvectors corresponding to distinct eigenvalues are orthogonal: Suppose that \(Mx = \lambda x \) and \(My = \rho y \) with \(\rho \neq \lambda \). Then

\[
\lambda (x \cdot y) = (\lambda x) \cdot y = (M x) \cdot y = (M x)^T y = (x^T M)^T y = (x^T M) y = x^T (M y) = x^T (\rho y) = x \cdot (\rho y) = \rho (x \cdot y)
\]

so \((\lambda - \rho)(x \cdot y) = 0 \); since \(\lambda - \rho \neq 0 \), we must have \(x \cdot y = 0 \).

7. Using the Gram-Schmidt method, we can get an orthonormal basis of eigenvectors:

- Let \(X_\lambda = \{ x \in \mathbb{R}^n : Mx = \lambda x \} \), the set of all eigenvectors corresponding to \(\lambda \). Notice that if \(Mx = \lambda x \) and \(My = \lambda y \), then

\[
M(\alpha x + \beta y) = \alpha M x + \beta M y = \alpha \lambda x + \beta \lambda y = \lambda (\alpha x + \beta y)
\]

so \(X_\lambda \) is a vector subspace. Thus, given any basis of \(X_\lambda \), we wish to find an orthonormal basis of \(X_\lambda \); all elements of this orthonormal basis will be eigenvectors corresponding to \(\lambda \).

- Suppose \(X_\lambda \) is \(m \)-dimensional and we are given independent vectors \(x_1, \ldots, x_m \in X_\lambda \). The Gram-Schmidt method finds an orthonormal basis \(\{ v_1, \ldots, v_m \} \) for \(X_\lambda \).

- Let \(v_1 = \frac{x_1}{|x_1|} \). Note that \(|v_1| = 1 \).
• Suppose we have found an orthonormal set \{v_1, \ldots, v_k\} such that span \{v_1, \ldots, v_k\} = span \{x_1, \ldots, x_k\}, with \(k < m\). Let

\[
y_{k+1} = x_{k+1} - \sum_{j=1}^{k} (x_{k+1} \cdot v_j)v_j, \quad v_{k+1} = \frac{y_{k+1}}{|y_{k+1}|}
\]

\[
\text{span \{v_1, \ldots, v_{k+1}\}} = \text{span \{v_1, \ldots, v_k, v_{k+1}\}}
\]

\[
= \text{span \{v_1, \ldots, v_k, y_{k+1}\}}
\]

\[
= \text{span \{v_1, \ldots, v_k, x_{k+1}\}}
\]

\[
= \text{span \{x_1, \ldots, x_k, x_{k+1}\}}
\]

• For \(i = 1, \ldots, k\),

\[
y_{k+1} \cdot v_i = \left(x_{k+1} - \sum_{j=1}^{k} (x_{k+1} \cdot v_j)v_j \right) \cdot v_i
\]

\[
= x_{k+1} \cdot v_i - \sum_{j=1}^{k} (x_{k+1} \cdot v_j)(v_j \cdot v_i)
\]

\[
= x_{k+1} \cdot v_i - \sum_{j=1}^{k} (x_{k+1} \cdot v_j)\delta_{ij}
\]

\[
= x_{k+1} \cdot v_i - x_{k+1} \cdot v_i
\]

\[
= 0
\]

\[
v_{k+1} \cdot v_i = \frac{y_{k+1} \cdot v_i}{|y_{k+1}|}
\]

\[
= \frac{0}{|y_{k+1}|}
\]

\[
= 0
\]

\[
|v_{k+1}| = \frac{|y_{k+1}|}{|y_{k+1}|}
\]

\[
= 1
\]

Application to Quadratic Forms

Consider a quadratic form

\[
f(x_1, \ldots, x_n) = \sum_{i=1}^{n} \alpha_{ii}x_i^2 + \sum_{i<j} \beta_{ij}x_ix_j \tag{1}
\]

Let

\[
\alpha_{ij} = \begin{cases}
\frac{\beta_{ij}}{2} & \text{if } i < j \\
\frac{\beta_{ij}}{2} & \text{if } i > j
\end{cases}
\]
Let

\[A = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nn} \end{pmatrix} \]

so

\[f(x) = x^\top Ax \]

Example: Let

\[f(x) = \alpha x_1^2 + \beta x_1 x_2 + \gamma x_2^2 \]

Let

\[A = \begin{pmatrix} \alpha & \frac{\beta}{2} \\ \frac{\beta}{2} & \gamma \end{pmatrix} \]

so \(A \) is symmetric and

\[
\begin{align*}
(x_1, x_2) \begin{pmatrix} \alpha & \frac{\beta}{2} \\ \frac{\beta}{2} & \gamma \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} &= (x_1, x_2) \begin{pmatrix} \alpha x_1 + \frac{\beta}{2} x_2 \\ \frac{\beta}{2} x_1 + \gamma x_2 \end{pmatrix} \\
&= \alpha x_1^2 + \beta x_1 x_2 + \gamma x_2^2 \\
&= f(x)
\end{align*}
\]

Returning to the general quadratic form in Equation (1), \(A \) is symmetric, so let \(V = \{v_1, \ldots, v_n\} \) be an orthonormal basis of eigenvectors of \(A \) with corresponding eigenvalues \(\lambda_1, \ldots, \lambda_n \). Then

\[
A = U^\top D U
\]

where

\[
D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}
\]

and \(U = Mt_{x_{V,W}}(id) \) is unitary.

The columns of \(U^\top \) (the rows of \(U \)) are the coordinates of \(v_1, \ldots, v_n \), expressed in terms of the standard basis \(W \).

Given \(x \in \mathbb{R}^n \), recall

\[
x = \sum_{i=1}^n \gamma_i v_i \text{ where } \gamma_i = x \cdot v_i
\]

Then

\[
f(x) = f\left(\sum \gamma_i v_i \right)
\]
\[
\begin{align*}
&= \left(\sum \gamma_i v_i \right)^T A \left(\sum \gamma_i v_i \right) \\
&= \left(\sum \gamma_i v_i \right)^T U^T D U \left(\sum \gamma_i v_i \right) \\
&= \left(U \sum \gamma_i v_i \right)^T D \left(U \sum \gamma_i v_i \right) \\
&= \left(\sum \gamma_i U v_i \right)^T D \left(\sum \gamma_i U v_i \right) \\
&= \left(\gamma_1, \ldots, \gamma_n \right) D \begin{pmatrix}
\gamma_1 \\
\vdots \\
\gamma_n
\end{pmatrix} \\
&= \sum \lambda_i \gamma_i^2
\end{align*}
\]

The equation for the level sets of \(f \) is
\[
\sum_{i=1}^{n} \lambda_i \gamma_i^2 = C
\]

- If \(\lambda_i \geq 0 \) for all \(i \), the level set is an ellipsoid, with principal axes in the directions \(v_1, \ldots, v_n \). The length of the principal axis along \(v_i \) is \(\sqrt{C/\lambda_i} \) if \(C \geq 0 \) (if \(\lambda_i = 0 \), the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if \(C < 0 \). See Figure 1.

- If \(\lambda_i \leq 0 \) for all \(i \), the level set is an ellipsoid, with principal axes in the directions \(v_1, \ldots, v_n \). The length of the principal axis along \(v_i \) is \(\sqrt{C/\lambda_i} \) if \(C \leq 0 \) (if \(\lambda_i = 0 \), the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if \(C > 0 \).

- If \(\lambda_i > 0 \) for some \(i \) and \(\lambda_j < 0 \) for some \(j \), the level set is a hyperboloid. For example, suppose \(n = 2 \), \(\lambda_1 > 0 \), \(\lambda_2 < 0 \). The equation is
\[
C = \lambda_1 \gamma_1^2 + \lambda_2 \gamma_2^2
\]

This is a hyperbola with asymptotes
\[
0 = \sqrt{\lambda_1 \gamma_1 + \sqrt{|\lambda_2| \gamma_2}} \\
\Rightarrow \gamma_1 = -\sqrt{\frac{|\lambda_2|}{\lambda_1}} \gamma_2 \\
0 = \left(\sqrt{\lambda_1 \gamma_1} - \sqrt{|\lambda_2| \gamma_2} \right) \\
\Rightarrow \gamma_1 = \sqrt{\frac{|\lambda_2|}{\lambda_1}} \gamma_2
\]

See Figure 2. This proves the following corollary of Theorem 4.
Corollary 5 Consider the quadratic form (1).

1. f has a global minimum at 0 if and only if $\lambda_i \geq 0$ for all i; the level sets of f are ellipsoids with principal axes aligned with the orthonormal eigenvectors v_1, \ldots, v_n.

2. f has a global maximum at 0 if and only if $\lambda_i \leq 0$ for all i; the level sets of f are ellipsoids with principal axes aligned with the orthonormal eigenvectors v_1, \ldots, v_n.

3. If $\lambda_i < 0$ for some i and $\lambda_j > 0$ for some j, then f has a saddle point at 0; the level sets of f are hyperboloids with principal axes aligned with the orthonormal eigenvectors v_1, \ldots, v_n.

Section 3.4. Linear Maps between Normed Spaces

Definition 6 Suppose X, Y are normed vector spaces and $T \in L(X, Y)$. We say T is **bounded** if

$$\exists \beta \in \mathbb{R} \text{ s.t. } \|T(x)\|_Y \leq \beta \|x\|_X \quad \forall x \in X$$

Note this implies that T is Lipschitz with constant β.

Theorem 7 (Thms. 4.1, 4.3) Let X, Y be normed vector spaces and $T \in L(X, Y)$. Then T is continuous at some point $x_0 \in X$ if and only if T is continuous at every $x \in X$ if and only if T is uniformly continuous on X if and only if T is Lipschitz if and only if T is bounded.

Proof: Suppose T is continuous at x_0. Fix $\varepsilon > 0$. Then there exists $\delta > 0$ such that

$$\|z - x_0\| < \delta \implies \|T(z) - T(x_0)\| < \varepsilon$$

Now suppose x is any element of X. If $\|y - x\| < \delta$, let $z = y - x + x_0$, so $\|z - x_0\| = \|y - x\| < \delta$.

$$\|T(y) - T(x)\| = \|T(y - x)\| = \|T(y - x + x_0 - x_0)\| = \|T(z) - T(x_0)\| < \varepsilon$$

which proves that T is continuous at every x, and uniformly continuous.
We claim that T is bounded if and only if T is continuous at 0. Suppose T is not bounded. Then

$$\exists \{x_n\} \text{ s.t. } \|T(x_n)\| > n\|x_n\| \quad \forall n$$

Note that $x_n \neq 0$. Let $\varepsilon = 1$. Fix $\delta > 0$ and choose n such that $\frac{1}{n} < \delta$. Let

$$x'_n = \frac{x_n}{n\|x_n\|}$$
$$\|x'_n\| = \frac{\|x_n\|}{n\|x_n\|} = \frac{1}{n} < \delta$$
$$\|T(x'_n) - T(0)\| = \|T(x'_n)\|$$
$$= \frac{1}{n\|x_n\|} \|T(x_n)\|$$
$$> \frac{n\|x_n\|}{n\|x_n\|} = 1$$
$$= \varepsilon$$

Since this is true for every δ, T is not continuous at 0. Therefore, T continuous at 0 implies T is bounded. Now, suppose T is bounded, so find M such that $\|T(x)\| \leq M\|x\|$ for every $x \in X$. Given $\varepsilon > 0$, let $\delta = \varepsilon/M$. Then

$$\|x - 0\| < \delta \implies \|x\| < \delta$$
$$\implies \|T(x) - T(0)\| = \|T(x)\| < M\delta$$
$$\implies \|T(x) - T(0)\| < \varepsilon$$

so T is continuous at 0.

Thus, we have shown that continuity at some point x_0 implies uniform continuity, which implies continuity at every point, which implies T is continuous at 0, which implies that T is bounded, which implies that T is continuous at 0, which implies that T is continuous at some x_0, so all of the statements except possibly the Lipschitz statement are equivalent.

Suppose T is bounded, with constant M. Then

$$\|T(x) - T(y)\| = \|T(x - y)\| \leq M\|x - y\|$$

so T is Lipschitz with constant M; conversely, if T is Lipschitz with constant M, then T is bounded with constant M. So all the statements are equivalent. ■

Every linear map on a finite-dimensional normed vector space is bounded (and thus continuous, uniformly continuous, and Lipschitz continuous).
Theorem 8 (Thm. 4.5) Let X, Y be normed vector spaces with $\dim X = n$. Every $T \in L(X, Y)$ is bounded.

Proof: See de la Fuente. ■

Definition 9 A *topological isomorphism* between normed vector spaces X and Y is a linear transformation $T \in L(X, Y)$ that is invertible (one-to-one, onto), continuous, and has a continuous inverse.

Two normed vector spaces X and Y are *topologically isomorphic* if there is a topological isomorphism $T : X \to Y$.

Suppose X and Y are normed vector spaces. We define

$$B(X,Y) = \{ T \in L(X,Y) : T \text{ is bounded} \}$$

$$\|T\|_{B(X,Y)} = \sup \left\{ \frac{\|T(x)\|_Y}{\|x\|_X} : x \in X, x \neq 0 \right\}$$

$$= \sup \{ \|T(x)\|_Y : \|x\|_X = 1 \}$$

Theorem 10 (Thm. 4.8) Let X, Y be normed vector spaces. Then

$$\left(B(X,Y), \| \cdot \|_{B(X,Y)} \right)$$

is a normed vector space.

Proof: See de la Fuente. ■

Theorem 11 (Thm. 4.9) Let $T \in L(R^n, R^m) (= B(R^n, R^m))$ with matrix $A = (a_{ij})$ with respect to the standard bases. Let

$$M = \max \{|a_{ij}| : 1 \leq i \leq m, 1 \leq j \leq n \}$$

Then

$$M \leq \|T\| \leq M\sqrt{mn}$$

Proof: See de la Fuente. ■

Theorem 12 (Thm. 4.10) Let $R \in L(R^m, R^n)$ and $S \in L(R^n, R^p)$. Then

$$\|S \circ R\| \leq \|S\|\|R\|$$
Proof: See de la Fuente. ■

Define

\[\Omega(\mathbb{R}^n) = \{ T \in L(\mathbb{R}^n, \mathbb{R}^n) : T \text{ is invertible} \} \]

Theorem 13 (Thm. 4.11’) Suppose \(T \in L(\mathbb{R}^n, \mathbb{R}^n) \) and \(E \) is the standard basis of \(\mathbb{R}^n \). Then

\[T \text{ is invertible} \iff \ker T = \{0\} \iff \det (Mt_x E(T)) \neq 0 \iff \det (Mt_{x,V}(T)) \neq 0 \text{ for every basis } V \iff \det (Mt_{x,W}(T)) \neq 0 \text{ for every pair of bases } V, W \]

Theorem 14 (Thm. 4.12) If \(S, T \in \Omega(\mathbb{R}^n) \), then \(S \circ T \in \Omega(\mathbb{R}^n) \) and

\[(S \circ T)^{-1} = T^{-1} \circ S^{-1} \]

Theorem 15 (Thm. 4.14) Let \(S, T \in L(\mathbb{R}^n, \mathbb{R}^n) \). If \(T \) is invertible and

\[\|T - S\| < \frac{1}{\|T^{-1}\|} \]

then \(S \) is invertible. In particular, \(\Omega(\mathbb{R}^n) \) is open in \(L(\mathbb{R}^n, \mathbb{R}^n) = B(\mathbb{R}^n, \mathbb{R}^n) \).

Proof: See de la Fuente. ■

Theorem 16 (4.15) The function \((\cdot)^{-1} : \Omega(\mathbb{R}^n) \to \Omega(\mathbb{R}^n)\) that assigns \(T^{-1} \) to each \(T \in \Omega(\mathbb{R}^n) \) is continuous.

Proof: See de la Fuente. ■
Figure 1: If $\lambda_1, \lambda_2 > 0$ and $C > 0$, the level set is an ellipsoid, with principal axes in the directions v_1, v_2. The length of the principal axis along v_i is $\sqrt{C/\lambda_i}$.
If $\lambda_1 > 0$ and $\lambda_2 < 0$, the level set is a hyperbola with asymptotes $\gamma_1 = \sqrt{\frac{\lambda_2}{\lambda_1}} \gamma_2$.

Figure 2: If $\lambda_1 > 0$ and $\lambda_2 < 0$, the level set is a hyperbola with asymptotes $\gamma_1 = \sqrt{\frac{\lambda_2}{\lambda_1}} \gamma_2$.