Sections 4.1-4.3 (Unified)

Definition 1 Let \(f : I \to \mathbb{R} \), where \(I \subseteq \mathbb{R} \) is an open interval. \(f \) is differentiable at \(x \in I \) if
\[
\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = a
\]
for some \(a \in \mathbb{R} \).

This is equivalent to \(\exists a \in \mathbb{R} \) such that:
\[
\lim_{h \to 0} \frac{f(x + h) - (f(x) + ah)}{h} = 0
\]
\[
\iff \forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } 0 < |h| < \delta \Rightarrow \left| \frac{f(x + h) - (f(x) + ah)}{h} \right| < \varepsilon
\]
\[
\iff \forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } 0 < |h| < \delta \Rightarrow \left| \frac{f(x + h) - (f(x) + ah)}{|h|} \right| < \varepsilon
\]
\[
\iff \lim_{h \to 0} \left| \frac{f(x + h) - (f(x) + ah)}{|h|} \right| = 0
\]
Recall that the limit considers \(h \) near zero, but not \(h = 0 \).

Definition 2 If \(X \subseteq \mathbb{R}^n \) is open, \(f : X \to \mathbb{R}^m \) is differentiable at \(x \in X \) if\(^1\)
\[
\exists T_x \in L(\mathbb{R}^n, \mathbb{R}^m) \text{ s.t. } \lim_{h \to 0, h \in \mathbb{R}^n} \frac{|f(x + h) - (f(x) + T_x(h))|}{|h|} = 0 \quad (1)
\]
\(f \) is differentiable if it is differentiable at all \(x \in X \).

Note that \(T_x \) is uniquely determined by Equation (1). \(h \) is a small, nonzero element of \(\mathbb{R}^n \); \(h \to 0 \) from any direction, from above, below, along a spiral, etc. The definition requires that one linear operator \(T_x \) works no matter how \(h \) approaches zero. In this case, \(f(x) + T_x(h) \) is the best linear approximation to \(f(x + h) \) for small \(h \).

Notation:

- \(y = O(|h|^n) \) as \(h \to 0 \) – read “\(y \) is big-Oh of \(|h|^n \)” – means
\[
\exists K, \delta > 0 \text{ s.t. } |h| < \delta \Rightarrow |y| \leq K|h|^n
\]

\(^1\)Recall \(| \cdot | \) denotes the Euclidean distance.
• $y = o(|h|^n)$ as $h \to 0$ – read “y is little-oh of $|h|^n$” – means
 \[
 \lim_{h \to 0} \frac{|y|}{|h|^n} = 0
 \]

Note that the statement $y = O(|h|^{n+1})$ as $h \to 0$ implies $y = o(|h|^n)$ as $h \to 0$.

Also note that if y is either $O(|h|^n)$ or $o(|h|^n)$, then $y \to 0$ as $h \to 0$; the difference in whether y is “big-Oh” or “little-oh” tells us something about the rate at which $y \to 0$.

Using this notation, note that f is differentiable at x $\iff \exists T_x \in L(\mathbb{R}^n, \mathbb{R}^m)$ such that
\[
f(x + h) = f(x) + T_x(h) + o(h) \text{ as } h \to 0
\]

Notation:

• df_x is the linear transformation T_x

• $Df(x)$ is the matrix of df_x with respect to the standard basis.
 This is called the Jacobian or Jacobian matrix of f at x

• $E_f(h) = f(x + h) - (f(x) + df_x(h))$ is the error term

Using this notation,
\[
f \text{ is differentiable at } x \iff E_f(h) = o(h) \text{ as } h \to 0
\]

Now compute $Df(x) = (a_{ij})$. Let \{e_1, \ldots, e_n\} be the standard basis of \mathbb{R}^n. Look in direction e_j (note that $|\gamma e_j| = |\gamma|$).
\[
o(\gamma) = f(x + \gamma e_j) - (f(x) + T_x(\gamma e_j))
\]
\[
= f(x + \gamma e_j) - f(x) - \begin{pmatrix}
a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mj} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
0 \\
\vdots \\
\gamma \\
0 \\
\vdots \\
0
\end{pmatrix}
\]
\[
= f(x + \gamma e_j) - \left(f(x) + \begin{pmatrix}
\gamma a_{1j} \\
\vdots \\
\gamma a_{mj}
\end{pmatrix} \right)
\]
For \(i = 1, \ldots, m \), let \(f^i \) denote the \(i \)th component of the function \(f \):

\[
f^i(x + \gamma e_j) - (f^i(x) + \gamma a_{ij}) = o(\gamma)
\]

so \(a_{ij} = \frac{\partial f^i}{\partial x_j}(x) \)

Theorem 3 (Thm. 3.3) Suppose \(X \subseteq \mathbb{R}^n \) is open and \(f : X \to \mathbb{R}^m \) is differentiable at \(x \in X \). Then \(\frac{\partial f^i}{\partial x_j} \) exists at \(x \) for \(1 \leq i \leq m \), \(1 \leq j \leq n \), and

\[
Df(x) = \begin{pmatrix}
\frac{\partial f^1}{\partial x_1}(x) & \cdots & \frac{\partial f^1}{\partial x_n}(x) \\
\vdots & \ddots & \vdots \\
\frac{\partial f^m}{\partial x_1}(x) & \cdots & \frac{\partial f^m}{\partial x_n}(x)
\end{pmatrix}
\]

i.e. the Jacobian at \(x \) is the matrix of partial derivatives at \(x \).

Remark: If \(f \) is differentiable at \(x \), then all first-order partial derivatives \(\frac{\partial f^i}{\partial x_j} \) exist at \(x \). However, the converse is false: existence of all the first-order partial derivatives does not imply that \(f \) is differentiable. The missing piece is continuity of the partial derivatives:

Theorem 4 (Thm. 3.4) If all the first-order partial derivatives \(\frac{\partial f^i}{\partial x_j} \) (\(1 \leq i \leq m \), \(1 \leq j \leq n \)) exist and are continuous at \(x \), then \(f \) is differentiable at \(x \).

Directional Derivatives:

Suppose \(X \subseteq \mathbb{R}^n \) open, \(f : X \to \mathbb{R}^m \) is differentiable at \(x \), and \(|u| = 1 \).

\[
f(x + \gamma u) - (f(x) + T_x(\gamma u)) = o(\gamma) \text{ as } \gamma \to 0
\]

\[
\Rightarrow f(x + \gamma u) - (f(x) + \gamma T_x(u)) = o(\gamma) \text{ as } \gamma \to 0
\]

\[
\Rightarrow \lim_{\gamma \to 0} \frac{f(x + \gamma u) - f(x)}{\gamma} = T_x(u) = Df(x)u
\]

i.e. the directional derivative in the direction \(u \) (with \(|u| = 1 \)) is

\[
Df(x)u \in \mathbb{R}^m
\]

Theorem 5 (Thm. 3.5, Chain Rule) Let \(X \subseteq \mathbb{R}^n \), \(Y \subseteq \mathbb{R}^m \) be open, \(f : X \to Y \), \(g : Y \to \mathbb{R}^p \). Let \(x_0 \in X \) and \(F = g \circ f \). If \(f \) is differentiable at \(x_0 \) and \(g \) is differentiable at \(f(x_0) \), then \(F = g \circ f \) is differentiable at \(x_0 \) and

\[
dF_{x_0} = dg_{f(x_0)} \circ df_{x_0}
\]

(composition of linear transformations)

\[
DF(x_0) = Dg(f(x_0))DF(x_0)
\]

(matrix multiplication)
Remark: The statement is exactly the same as in the univariate case, except we replace the univariate derivative by a linear transformation. The proof is more or less the same, with a bit of linear algebra added.

Theorem 6 (Thm. 1.7, Mean Value Theorem, Univariate Case) Let \(a, b \in \mathbb{R}\). Suppose \(f : [a, b] \rightarrow \mathbb{R}\) is continuous on \([a, b]\) and differentiable on \((a, b)\). Then there exists \(c \in (a, b)\) such that

\[
\frac{f(b) - f(a)}{b - a} = f'(c)
\]

that is, such that

\[
f(b) - f(a) = f'(c)(b - a)
\]

Proof: Consider the function

\[
g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)
\]

Then \(g(a) = 0 = g(b)\). See Figure 1. Note that for \(x \in (a, b)\),

\[
g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}
\]

so it suffices to find \(c \in (a, b)\) such that \(g'(c) = 0\).

Case I: If \(g(x) = 0\) for all \(x \in [a, b]\), choose an arbitrary \(c \in (a, b)\), and note that \(g'(c) = 0\), so we are done.

Case II: Suppose \(g(x) > 0\) for some \(x \in [a, b]\). Since \(g\) is continuous on \([a, b]\), it attains its maximum at some point \(c \in (a, b)\). Since \(g\) is differentiable at \(c\) and \(c\) is an interior point of the domain of \(g\), we have \(g'(c) = 0\), and we are done.

Case III: If \(g(x) < 0\) for some \(x \in [a, b]\), the argument is similar to that in Case II. \(\blacksquare\)

Remark: The Mean Value Theorem is useful for estimating bounds on functions and error terms in approximation of functions.

Notation:

\[
\ell(x, y) = \{\alpha x + (1 - \alpha)y : \alpha \in [0, 1]\}
\]

is the line segment from \(x\) to \(y\).

Theorem 7 (Mean Value Theorem) Suppose \(f : \mathbb{R}^n \rightarrow \mathbb{R}\) is differentiable on an open set \(X \subseteq \mathbb{R}^n\), \(x, y \in X\) and \(\ell(x, y) \subseteq X\). Then there exists \(z \in \ell(x, y)\) such that

\[
f(y) - f(x) = Df(z)(y - x)
\]
Remark: This statement is different from Theorem 3.7 in de la Fuente. Notice that the statement is exactly the same as in the univariate case. For \(f : \mathbb{R}^n \to \mathbb{R}^m \), we can apply the Mean Value Theorem to each component, to obtain \(z_1, \ldots, z_m \in \ell(x, y) \) such that

\[
f^i(y) - f^i(x) = Df^i(z_i)(y - x)
\]

However, we cannot find a single \(z \) which works for every component. Note that each \(z_i \in \ell(x, y) \subset \mathbb{R}^n \); there are \(m \) of them, one for each component in the range.

The following result plays the same role in estimating function values and error terms for functions taking values in \(\mathbb{R}^m \) as the Mean Value Theorem plays for functions from \(\mathbb{R} \) to \(\mathbb{R} \).

Theorem 8 Suppose \(X \subset \mathbb{R}^n \) is open and \(f : X \to \mathbb{R}^m \) is differentiable. If \(x, y \in X \) and \(\ell(x, y) \subseteq X \), then there exists \(z \in \ell(x, y) \) such that

\[
|f(y) - f(x)| \leq |df_z(y - x)|
\]

\[
\leq \|df_z\||y - x|
\]

Remark: To understand why we don’t get equality, consider \(f : [0, 1] \to \mathbb{R}^2 \) defined by

\[
f(t) = (\cos 2\pi t, \sin 2\pi t)
\]

\(f \) maps \([0, 1]\) to the unit circle in \(\mathbb{R}^2 \). Note that \(f(0) = f(1) = (1, 0) \), so \(|f(1) - f(0)| = 0 \).

However, for any \(z \in [0, 1] \),

\[
|df_z(1 - 0)| = |2\pi(-\sin 2\pi z, \cos 2\pi z)|
\]

\[
= 2\pi \sqrt{\sin^2 2\pi z + \cos^2 2\pi z}
\]

\[
= 2\pi
\]

Section 4.4. Taylor’s Theorem

Theorem 9 (Thm. 1.9, Taylor’s Theorem in \(\mathbb{R}^1 \)) Let \(f : I \to \mathbb{R} \) be \(n \)-times differentiable, where \(I \subseteq \mathbb{R} \) is an open interval. If \(x, x + h \in I \), then

\[
f(x + h) = f(x) + \sum_{k=1}^{n-1} \frac{f^{(k)}(x)h^k}{k!} + E_n
\]

where \(f^{(k)} \) is the \(k \)th derivative of \(f \) and

\[
E_n = \frac{f^{(n)}(x + \lambda h)h^n}{n!} \text{ for some } \lambda \in (0, 1)
\]
Motivation: Let

\[T_n(h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^k}{k!} \]

\[= f(x) + f'(x)h + \frac{f''(x)h^2}{2} + \cdots + \frac{f^{(n)}(x)h^n}{n!} \]

\[T_n(0) = f(x) \]

\[T'_n(h) = f'(x) + f''(x)h + \cdots + \frac{f^{(n)}(x)h^{n-1}}{(n-1)!} \]

\[T'_n(0) = f'(x) \]

\[T''_n(h) = f''(x) + \cdots + \frac{f^{(n)}(x)h^{n-2}}{(n-2)!} \]

\[T''_n(0) = f''(x) \]

\[\vdots \]

\[T^{(n)}_n(0) = f^{(n)}(x) \]

so \(T_n(h) \) is the unique \(n^{th} \) degree polynomial such that

\[T_n(0) = f(x) \]

\[T'_n(0) = f'(x) \]

\[\vdots \]

\[T^{(n)}_n(0) = f^{(n)}(x) \]

The proof of the formula for the remainder \(E_n \) is essentially the Mean Value Theorem; the problem in applying it is that the point \(x + \lambda h \) is not known in advance.

Theorem 10 (Alternate Taylor’s Theorem in \(\mathbb{R}^1 \)) Let \(f : I \to \mathbb{R} \) be \(n \) times differentiable, where \(I \subseteq \mathbb{R} \) is an open interval and \(x \in I \). Then

\[f(x + h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^k}{k!} + o(h^n) \text{ as } h \to 0 \]

If \(f \) is \((n + 1)\) times continuously differentiable (i.e. all derivatives up to order \(n + 1 \) exist and are continuous), then

\[f(x + h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^k}{k!} + O(h^{n+1}) \text{ as } h \to 0 \]

Remark: The first equation in the statement of the theorem is essentially a restatement of the definition of the \(n^{th} \) derivative. The second statement is proven from Theorem 1.9, and the continuity of the derivative, hence the boundedness of the derivative on a neighborhood of \(x \).
Definition 11 Let $X \subseteq \mathbb{R}^n$ be open. A function $f : X \to \mathbb{R}^m$ is continuously differentiable on X if

- f is differentiable on X and
- $d f_x$ is a continuous function of x from X to $L(\mathbb{R}^n, \mathbb{R}^m)$, with operator norm $\|d f_x\|

f is C^k if all partial derivatives of order less than or equal to k exist and are continuous in X.

Theorem 12 (Thm. 4.3) Suppose $X \subseteq \mathbb{R}^n$ is open and $f : X \to \mathbb{R}^m$. Then f is continuously differentiable on X if and only if f is C^1.

Remark: The notation in Taylor’s Theorem is difficult. If $f : \mathbb{R}^n \to \mathbb{R}^m$, the quadratic terms are not hard for $m = 1$; for $m > 1$, we handle each component separately. For cubic and higher order terms, the notation is a mess.

Linear Terms:

Theorem 13 Suppose $X \subseteq \mathbb{R}^n$ is open and $x \in X$. If $f : X \to \mathbb{R}^m$ is differentiable, then

$$f(x + h) = f(x) + D f(x) h + o(h) \text{ as } h \to 0$$

The previous theorem is essentially a restatement of the definition of differentiability.

Theorem 14 (Corollary of 4.4) Suppose $X \subseteq \mathbb{R}^n$ is open and $x \in X$. If $f : X \to \mathbb{R}^m$ is C^2, then

$$f(x + h) = f(x) + D f(x) h + O\left(|h|^2 \right) \text{ as } h \to 0$$

Quadratic Terms:

We treat each component of the function separately, so consider $f : X \to \mathbb{R}$, $X \subseteq \mathbb{R}^n$ an open set. Let

$$D^2 f(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) & \cdots & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{pmatrix}$$

$f \in C^2 \Rightarrow \frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x)$

$\Rightarrow D^2 f(x)$ is symmetric

$\Rightarrow D^2 f(x)$ has an orthonormal basis of eigenvectors

and thus can be diagonalized
Theorem 15 (Stronger Version of Thm. 4.4) Let $X \subseteq \mathbb{R}^n$ be open, $f : X \to \mathbb{R}$, $f \in C^2(X)$, and $x \in X$. Then

$$f(x + h) = f(x) + Df(x)h + \frac{1}{2}h^\top(D^2f(x))h + o\left(|h|^2\right) \text{ as } h \to 0$$

If $f \in C^3$,

$$f(x + h) = f(x) + Df(x)h + \frac{1}{2}h^\top(D^2f(x))h + O\left(|h|^3\right) \text{ as } h \to 0$$

Remark: de la Fuente assumes X is convex. X is said to be convex if, for every $x, y \in X$ and $\alpha \in [0, 1]$, $\alpha x + (1 - \alpha)y \in X$. Notice we don’t need this. Since X is open,

$$x \in X \Rightarrow \exists \delta > 0 \text{ s.t. } B_\delta(x) \subseteq X$$

and $B_\delta(x)$ is convex.

Definition 16 We say f has a saddle at x if $Df(x) = 0$ but f has neither a local maximum nor a local minimum at x.

Corollary 17 Suppose $X \subseteq \mathbb{R}^n$ is open and $x \in X$. If $f : X \to \mathbb{R}$ is C^2, then there is an orthonormal basis $\{v_1, \ldots, v_n\}$ and corresponding eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ of $D^2f(x)$ such that

$$f(x + h) = f(x + \gamma_1v_1 + \cdots + \gamma_nv_n) = f(x) + \sum_{i=1}^n (Df(x)v_i) \gamma_i + \frac{1}{2} \sum_{i=1}^n \lambda_i \gamma_i^2 + o\left(\gamma^2\right)$$

where $\gamma_i = h \cdot v_i$.

1. If $f \in C^3$, we may strengthen $o(|\gamma|^2)$ to $O(|\gamma|^3)$.

2. If f has a local maximum or local minimum at x, then

$$Df(x) = 0$$

3. If $Df(x) = 0$, then

$$\lambda_1, \ldots, \lambda_n > 0 \Rightarrow f \text{ has a local minimum at } x$$

$$\lambda_1, \ldots, \lambda_n < 0 \Rightarrow f \text{ has a local maximum at } x$$

$$\lambda_i < 0 \text{ for some } i, \lambda_j > 0 \text{ for some } j \Rightarrow f \text{ has a saddle at } x$$

$$\lambda_1, \ldots, \lambda_n \geq 0, \lambda_i > 0 \text{ for some } i \Rightarrow f \text{ has a local minimum}$$

$$\text{or a saddle at } x$$

$$\lambda_1, \ldots, \lambda_n \leq 0, \lambda_i < 0 \text{ for some } i \Rightarrow f \text{ has a local maximum}$$

$$\text{or a saddle at } x$$

$$\lambda_1 = \cdots = \lambda_n = 0 \Rightarrow \text{gives no information.}$$
Proof: (Sketch) From our study of quadratic forms, we know the behavior of the quadratic terms is determined by the signs of the eigenvalues. If $\lambda_i = 0$ for some i, then we know that the quadratic form arising from the second partial derivatives is identically zero in the direction v_i, and the higher derivatives will determine the behavior of the function f in the direction v_i. For example, if $f(x) = x^3$, then $f'(0) = 0$, $f''(0) = 0$, but we know that f has a saddle at $x = 0$; however, if $f(x) = x^4$, then again $f'(0) = 0$ and $f''(0) = 0$ but f has a local (and global) minimum at $x = 0$. ■
Figure 1: The Mean Value Theorem.