Econ 204 - Problem Set 4

Due Tuesday, August 13

1. Let A be an $n \times n$ matrix.
(a) Show that if λ is an eigenvalue of A, then λ^{k} is an eigenvalue of A^{k} for $k \in \mathbb{N}$.
(b) Show that if λ is an eigenvalue of the matrix A and A is invertible, then $1 / \lambda$ is an eigenvalue of A^{-1}.
(c) Find an expression for $\operatorname{det}(A)$ in terms of the eigenvalues of A.
(d) The eigenspace of an eigenvalue λ_{i} is the kernel of $A-\lambda_{i} I$. Show that the eigenspace of any matrix A belonging to an eigenvalue λ_{i} is a vector space.
2. Let V be an n-dimensional vector space. Call a linear operator $T: V \rightarrow V$ idempotent if $T \circ T=T$. Prove that all such operators are diagonalizable (that is, any matrix representation $A=M t x_{U}(T)$ is diagonalizable). What are the eigenvalues?
3. Let V be a finite-dimensional vector space and $W \subset V$ be a vector subspace. Prove that W has a complement in V, i.e., there exists a vector subspace $W^{\prime} \subset V$ such that $W \cap W^{\prime}=\{0\}$ and $W+W^{\prime}=V$.
4. Let U and V be vector spaces. Suppose $T: U \rightarrow V$ is a linear transformation and $v \in V$. Prove that, if the preimage $T^{-1}(v)$ is non-empty, and $u \in T^{-1}(v)$, then $T^{-1}(v)=\{u+z \mid z \in$ $\operatorname{ker} T\}=u+\operatorname{ker} T$.
5. Call a function $T: V \rightarrow W$ additive if $T(x+y)=T(x)+T(y)$ for every $x, y \in V$. Prove the following:
(a) Any rational additive function $T: \mathbb{Q} \rightarrow \mathbb{Q}$ is linear.
(b) There is some real additive function $T: \mathbb{R} \rightarrow \mathbb{R}$ that is not linear.
(c) If an additive function $T: \mathbb{R} \rightarrow \mathbb{R}$ is nonlinear, then its graph $\Gamma=\{(x, T(x)): x \in \mathbb{R}\}$ is dense in \mathbb{R}^{2}.
(d) If an additive function $T: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at a point x_{0}, then it is linear.
6. (a) Show that det : $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is continuous.
(b) Use the continuity of the determinant to prove that the set of all invertible matrices is an open, dense subset of all square matrices.
