Econ 204 – Problem Set 4

Due Tuesday, August 13

- 1. Let A be an $n \times n$ matrix.
 - (a) Show that if λ is an eigenvalue of A, then λ^k is an eigenvalue of A^k for $k \in \mathbb{N}$.
 - (b) Show that if λ is an eigenvalue of the matrix A and A is invertible, then $1/\lambda$ is an eigenvalue of A^{-1} .
 - (c) Find an expression for det(A) in terms of the eigenvalues of A.
 - (d) The eigenspace of an eigenvalue λ_i is the kernel of $A \lambda_i I$. Show that the eigenspace of any matrix A belonging to an eigenvalue λ_i is a vector space.
- 2. Let V be an n-dimensional vector space. Call a linear operator $T:V\to V$ idempotent if $T\circ T=T$. Prove that all such operators are diagonalizable (that is, any matrix representation $A=Mtx_U(T)$ is diagonalizable). What are the eigenvalues?
- 3. Let V be a finite-dimensional vector space and $W \subset V$ be a vector subspace. Prove that W has a complement in V, i.e., there exists a vector subspace $W' \subset V$ such that $W \cap W' = \{0\}$ and W + W' = V.
- 4. Let U and V be vector spaces. Suppose $T: U \to V$ is a linear transformation and $v \in V$. Prove that, if the preimage $T^{-1}(v)$ is non-empty, and $u \in T^{-1}(v)$, then $T^{-1}(v) = \{u + z | z \in \ker T\} = u + \ker T$.
- 5. Call a function $T: V \to W$ additive if T(x+y) = T(x) + T(y) for every $x, y \in V$. Prove the following:
 - (a) Any rational additive function $T: \mathbb{Q} \to \mathbb{Q}$ is linear.
 - (b) There is some real additive function $T: \mathbb{R} \to \mathbb{R}$ that is not linear.
 - (c) If an additive function $T: \mathbb{R} \to \mathbb{R}$ is nonlinear, then its graph $\Gamma = \{(x, T(x)) : x \in \mathbb{R}\}$ is dense in \mathbb{R}^2 .
 - (d) If an additive function $T: \mathbb{R} \to \mathbb{R}$ is continuous at a point x_0 , then it is linear.
- 6. (a) Show that $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$ is continuous.
 - (b) Use the continuity of the determinant to prove that the set of all invertible matrices is an open, dense subset of all square matrices.