
Economics 204 Summer/Fall 2019
Final Exam – Suggested Solutions

Answer all of the questions below. Be as complete, correct, and concise as possible. There are
6 questions for a total of 165 points possible; point values for each problem are in parentheses.
For questions with subparts, each subpart is worth the same number of points. You have
180 minutes to complete the exam. Use the points as a guide to allocating your time. You
may use any result from class with appropriate references unless you are specifically being
asked to prove it.

1. (15) Define or state each of the following.

(a) eigenvalue of a linear transformation T : X → Y between vector spaces X and Y

over the same field F

(b) Cauchy sequence in a metric space (X, d)

(c) Separating Hyperplane Theorem

Solution: See notes.

2. (30) Show that for every n ∈ N = {1, 2, 3, . . .},

n∑

k=1

(2k − 1) = n2

Solution: The proof below is by induction. For the base case, let n = 1. Then

1∑

k=1

(2k − 1) = 2 − 1 = 1 = 12

So the claim is true for n = 1.

For the induction hypothesis, suppose for some n ≥ 1

n∑

k=1

(2k − 1) = n2

Then consider n + 1.

n+1∑

k=1

(2k − 1) =
n∑

k=1

(2k − 1) + (2(n + 1) − 1)

= n2 + 2n + 2 − 1 by the induction hypothesis

= n2 + 2n + 1 = (n + 1)2

Thus the claim is true for n + 1. Thus by induction the claim is true for all n ∈ N.

1



3. (30) Let X and Y be vector spaces over the same field F , and let T : X → Y be a
linear transformation.

(a.) Show that kerT is a vector subspace of X, and ImT is a vector subspace of Y .

Solution: To show that kerT is a vector subspace of X, let x, y ∈ kerT and
α, β ∈ F . Then

T (αx + βy) = αT (x) + βT (y) = α0 + β0 = 0

where the first equality follows from linearity of T and the second from the assump-
tion that x, y ∈ kerT , so T (x) = T (y) = 0 by definition. Thus αx + βy ∈ kerT .
Thus kerT is a vector subspace of X.

Similarly, to show that Im T is a vector subspace of Y , let v, w ∈ ImT and
α, β ∈ F . Then by definition, there exist x, y ∈ X such that T (x) = v and
T (y) = w. Then αx + βy ∈ X because X is a vector space, and

T (αx + βy) = αT (x) + βT (y) = αv + βw

where the first equality follows from linearity of T and the second by definition
of x and y. Thus αv + βw ∈ Im T . Thus ImT is a vector subspace of Y .

(b.) Suppose X is finite-dimensional. Show that dimX = dim kerT + RankT .

Solution: Let n = dimX. By definition, Rank T = dimImT . By (a), kerT

is a vector subspace of X. Let V = {v1, . . . , vr} be a basis for kerT . Note
that V must be finite and have cardinality at most n, since V ⊆ X is linearly
independent. Then extend V to a basis {v1, . . . , vr} ∪ {w1, . . . , wk} for X. By
definition, r + k = n, and r = dim kerT .

Now consider U = {T (w1), . . . , T (wk)}. Claim U is a basis for ImT . To see that
U is linearly independent, suppose

k∑

i=1

αiT (wi) = 0 for some α1, . . . , αk ∈ F

Then since T is linear,

0 =

k∑

i=1

αiT (wi) = T (

k∑

i=1

αiwi)

⇒
k∑

i=1

αiwi ∈ kerT

⇒
k∑

i=1

αiwi =
r∑

j=1

βjvj for some β1, . . . , βr ∈ F

⇒
k∑

i=1

αiwi −
r∑

j=1

βjvj = 0
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But {v1, . . . , vr}∪ {w1, . . . , wk} is linearly independent, so αi = βj = 0 for all i, j.
Thus {T (w1), . . . , T (wk)} is linearly independent. Now claim {T (w1), . . . , T (wk)}
spans ImT . To see this, let y ∈ ImT . Then there exists x ∈ X such that
T (x) = y. Since x ∈ X, there exist α1, . . . , αk, β1, . . . , βr ∈ F such that

x =

k∑

i=1

αiwi +

r∑

j=1

βjvj

Then

T (x) = T (
k∑

i=1

αiwi +
r∑

j=1

βjvj)

=
k∑

i=1

αiT (wi) +
r∑

j=1

βjT (vj) since T is linear

=
k∑

i=1

αiT (wi) since T (vj) = 0 ∀j

So y = T (x) =
∑k

i=1 αiT (wi). Thus ImT ⊆ span {T (w1), . . . , T (wk)}. Given

α1, . . . , αk ∈ F ,
∑k

i=1 αiwi ∈ X and
∑k

i=1 αiT (wi) = T (
∑k

i=1 αiwi) ∈ Im T . Thus
span {T (w1), . . . , T (wk)} ⊆ ImT , which establishes that Im T = span {T (w1), . . . , T (wk)}.

Then by definition, RankT = dimIm T = |U | = k. So

dim X = n = r + k = dim kerT + Rank T

4. (30) Let X ⊆ R
n be open and f : X → R be differentiable on X. Suppose x∗ ∈ X and

f(x∗) ≥ f(x) for all x ∈ X. Show that Df(x∗) = 0.

Solution: Since f is differentiable on X and x∗ ∈ X,

Df(x∗) = (
∂f

∂x1
(x∗), . . . ,

∂f

∂xn

(x∗)

Then it suffices to show that ∂f

∂xi
(x∗) = 0 for each i = 1, . . . , n. To that end, note that

by definition
∂f

∂xi

(x∗) = lim
h→0

f(x∗ + hei) − f(x∗)

h

where ei = (0, . . . 1, . . . , 0 is the ith standard basis vector in R
n and h ∈ R, h 6= 0.

Then for all h ∈ R, f(x∗) ≥ f(x∗ + hei), so

f(x∗ + hei) − f(x∗) ≤ 0

Now consider a sequence hn → 0 such that hn > 0 for all n (e.g., hn = 1
n

for each n).
From above,

∂f

∂xi

(x∗) = lim
n→∞

f(x∗ + hnei) − f(x∗)

hn
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Since
f(x∗ + hnei) − f(x∗)

hn

≤ 0 ∀n

this implies
∂f

∂xi

(x∗) ≤ 0

Similarly, consider a sequence hn → 0 such that hn < 0 for all n (e.g., hn = − 1
n

for
each n). From above, since

f(x∗ + hnei) − f(x∗)

hn

≥ 0 ∀n

this implies
∂f

∂xi

(x∗) ≥ 0

Thus ∂f

∂xi
(x∗) = 0.

5. (30) Let (X, d) be a metric space and C ⊆ X be compact. Let U ⊆ X be an open set
such that C ⊆ U . Show that there exists ε > 0 such that

Bε(C) =
⋃

x∈C

Bε(x) ⊆ U

Solution: Since C ⊆ U and U is open, for each x ∈ C there exists εx > 0 such that
Bεx

(x) ⊆ U . Then {B εx

2

(x) : x ∈ C} is an open cover of C . Since C is compact, there
exists x1, . . . , xn such that

C ⊆ B εx1

2

(x1) ∪ · · · ∪ B εxn

2

(xn)

Now let ε = min{
εx1

2
, . . . ,

εxn

2
} > 0. Let y ∈ Bε(C), so there exists x ∈ C such that

y ∈ Bε(x). Since x ∈ C , there exists i such that x ∈ B εxi

2

(xi). Then

d(y, xi) ≤ d(y, x) + d(x, xi) < ε +
εxi

2
≤

εxi

2
+

εxi

2
= εxi

So y ∈ Bεxi
(xi) ⊆ U . Thus Bε(C) ⊆ U .

Here is an argument using sequential compactness instead. Suppose by way of contra-
diction that 6 ∃ε > 0 such that Bε(C) ⊆ U . Then for each n there exists yn ∈ B 1

n

(C)

such that yn 6∈ U . Since yn ∈ B 1

n

(C), there exists xn ∈ C such that d(yn, xn) < 1
n
.

Then {xn} ⊆ C and C is compact, hence sequentially compact, so there is a convergent
subsequence xnk

→ x ∈ C . Since d(yn, xn) < 1
n

for each n, the subsequence {ynk
} also

converges, and ynk
→ x. But x ∈ C ⊆ U and U is open, so there exists δ > 0 such that

Bδ(x) ⊆ U . Since ynk
6∈ U for each nk, this implies ynk

6→ x, a contradiction. Thus
there exists ε > 0 such that Bε(C) ⊆ U .
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6. (30) Let a, b ∈ R with a ≤ b.

a. Let Ψ : [a, b] → 2R be a correspondence that is continuous and nonempty-valued,
so Ψ(x) ⊆ R is a nonempty set for each x ∈ [a, b]. Suppose y ≥ 0 ∀ y ∈ Ψ(a), and
y ≤ 0 ∀ y ∈ Ψ(b) (so Ψ(a) ⊆ [0,∞) and Ψ(b) ⊆ (−∞, 0]). Show that there exists
c ∈ [a, b] such that 0 ∈ Ψ(c).

Solution: If 0 ∈ Ψ(a) or 0 ∈ Ψ(b) then we are done. So without loss of
generality suppose y > 0 for all y ∈ Ψ(a) and y < 0 for all y ∈ Ψ(b). Then let

B = {x ∈ [a, b] : y ≥ 0 for all y ∈ Ψ(x)}

Since a ∈ B, B 6= ∅. Since B ⊆ [a, b], B is bounded. Then let

c = sup B

Since B is nonempty and bounded, c ∈ R, and B ⊆ [a, b] ⇒ c ∈ [a, b]. Now claim
0 ∈ Ψ(c).

To see this, first note that for every n there exists xn ∈ B such that

c −
1

n
≤ xn ≤ c

Then xn → c by construction. Now let y ∈ Ψ(c). Since Ψ is lhc at c, there exists
{yn} such that yn ∈ Ψ(xn) for each n and yn → y. Since xn ∈ B for each n,
yn ≥ 0 for each n. Thus y = limn yn ≥ 0. Since y was arbitrary, y ≥ 0 for each
y ∈ Ψ(c). Then note that this implies c 6= b, so c < b.

Now suppose by way of contradiction that 0 6∈ Ψ(c). Then Ψ(c) ⊆ (0,∞) and
V = (0,∞) is an open set. Since Ψ is uhc at c, there exists an open set W 3 c

such that for all x ∈ W , Ψ(x) ⊆ V = (0,∞). But c < b and W 3 c is open,
so there exists x ∈ W ∩ [a, b] with x > c. Since x > c, x 6∈ B, so there exists
y ∈ Ψ(x) such that y < 0. This is a contradiction. Therefore 0 ∈ Ψ(c).

b. Let Φ : [a, b] → 2[a,b] be a correspondence that is continuous, and nonempty- and
closed-valued, so Φ(x) ⊆ [a, b] is a nonempty closed set for each x ∈ [a, b]. Show
that Φ has a fixed point.

(Hint: No theorem from class will directly imply this result. Use (a).)

Solution: Let Ψ : [a, b] → 2R be given by

Ψ(x) = Φ(x) − {x} for each x ∈ [a, b]

Note that from (a) it suffices to show that Ψ is continuous and nonempty-valued,
as in that case (a) shows ∃x∗ ∈ [a, b] such that 0 ∈ Ψ(x∗), which implies 0 ∈
Φ(x∗) − {x∗} or x∗ ∈ Φ(x∗).

Since Φ(x) 6= ∅ for each x, Ψ(x) 6= ∅ for each x. To see that Ψ is continuous, first
note that Φ(x) ⊆ [a, b] for each x, so Ψ(x) ⊆ [a−b, b−a] for each x. Next note that
Φ(x) ⊆ [a, b] is closed and hence compact for each x, so Ψ(x) is also compact for
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each x. Then to show that Ψ is uhc, it suffices to show that Ψ has closed graph.
To that end, let (xn, wn) ∈ graph Ψ for each n and (xn, wn) → (x, w). Since
wn ∈ Ψ(xn) for each n, there exists xn ∈ Φ(xn) for each n such that wn = zn−xn.
Then xn → x and wn → w, so zn = wn + xn → w + x = z. So (xn, zn) → (x, z)
and (xn, zn) ∈ graph Φ for each n. Since Φ is uhc and closed-valued, Φ has closed
graph, so (x, z) ∈ graph Φ, that is, z ∈ Φ(x). Thus w = z − x ∈ graph Ψ. Thus
Ψ has closed graph, and hence is uhc.

To see that Ψ is lhc, let x ∈ [a, b] and {xn} ⊆ [a, b] with xn → x. Let w ∈ Ψ(x), so
w = z−x for some z ∈ Φ(x). Since Φ is lhc at x, there exists {zn} with zn ∈ Φ(xn)
for each n and zn → z. Then zn − xn → z − x = w and zn − xn ∈ Ψ(xn) for each
n. Thus Ψ is lhc.

Here is an argument that Ψ is uhc using the sequential characterization of uhc.
First note that Ψ is compact-valued, so the sequential characterization of uhc
is valid. Then let {xn} ⊆ [a, b] with xn → x and wn ∈ Ψ(xn) for each n. For
each n there exists zn ∈ Φ(xn) such that wn = zn − xn. Since Φ is uhc and
compact-valued, there exists a subsequence {znk

} such that znk
→ z ∈ Φ(x).

Then wnk
= znk

− xnk
→ z − x ∈ Ψ(x). Therefore Ψ is uhc.

Here is an argument that Ψ is uhc using the definition. Let V be an open set
such that Ψ(x) ⊆ V . Then since Ψ(x) is compact there exists ε > 0 such that

Bε(Ψ(x)) = Bε(Φ(x) − {x}) ⊆ V

Then B ε

2
(Φ(x)) is an open set and Φ(x) ⊆ B ε

2
(Φ(x)), so using uhc of Φ there

exists an open set W 3 x such that

Φ(y) ⊆ B ε

2
(Φ(x)) ∀y ∈ W

Then x ∈ W and W is open, so there exists δ > 0 such that B δ

2

(x) ⊆ W . Then

set ε̄ = min{ δ
2
, ε

2
}. Bε̄(x) 3 x is open and for all y ∈ Bε̄(x) ⊆ W , if w ∈ Ψ(y)

then w = z − y for some z ∈ Φ(y) ⊆ B ε

2
(Φ(x)). Thus there exists z′ ∈ Φ(x) such

that d(z, z′) < ε
2
. So

d(z − y, z′ − x) ≤ d(z, z′) + d(y, x)

<
ε

2
+ ε̄

≤
ε

2
+

ε

2
= ε

So w = z − y ∈ Bε(Ψ(x)) ⊆ V . Since w ∈ Ψ(y) was arbitrary, Ψ(y) ⊆ V .

Finally, here is an argument that Ψ is lhc using the definition. Let V be an
open set such that Ψ(x) ∩ V 6= ∅. Then (Φ(x) − {x}) ∩ V 6= ∅, so there exists
z ∈ Φ(x) such that z − x ∈ V . Since V is open, there exists ε > 0 such that
Bε(z − x) ⊆ V . Then B ε

2

(z) is open and Φ(x) ∩ B ε

2

(z) 6= ∅, so using the lhc of
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Φ, there exists an open set W 3 x such that for all y ∈ W , Φ(y) ∩ B ε

2

(z) 6= ∅.
Since W is open and x ∈ W , there exists δ > 0 such that B δ

2

(x) ⊆ W . Then let

ε̄ = min( δ
2
, ε

2
). Bε̄(x) 3 x is open, and for all y ∈ Bε̄(x) there exists z′ ∈ Φ(y)

such that d(z′, z) < ε
2
. Then

d(z′ − y, z − x) ≤ d(z′, z) + d(y, x)

<
ε

2
+ ε̄

≤
ε

2
+

ε

2
= ε

So z′ − y ∈ Ψ(y) ∩ Bε(z − x) and Bε(z − x) ⊆ V , so Ψ(y) ∩ V 6= ∅.
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