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How Might This Matter

C—\.A\ = bl Sy ARSI k\'\-'
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e \Why does diagonalizability matter? '

Consider a two-dimensional linear difference equation:

Ct+1 | — ( P11 D12 “t ) vt=0,1,2.3,...

ki41 bo1 b2o k¢ T
given an initial condition cq, kg, or, setting

Ct b11 b12
= VYVt and B =
v (kt> (1921 bzz)

we can rewrite this more compactly as

Yi+1 = Byr Vi
where b;; € R each 1, j.



We want to find a solution y, t = 1,2,3,... given initial
condition yg. (Why?)

Such a dynamical system will arise for example as a character-
ization of the solution to a standard infinite-horizon optimal
growth problem (202a, lecture 2).

@ IS diagonalizabl‘—e,\this can be easily solved after a change
of basis. If B is diagonalizable, choose an invertible 2 x 2 real
matrix P such that

1 __~_(d1 O
P BP—D—<O d2>

Then .
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Yi+1 — By vVt <— P 1yt_|_1 = P 1Byt V¢ (auct - by >
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= &C}‘ = D,
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where 7y = P~ 1y, Vt.

Since D is diagonal, after a change of basis to y;, we need to
solve two independent linear univariate difference equations,
which is easy:

— t—
yit = d;yio Vi L=\ >

Not all real n x n matrices are diagonalizable (not even all
invertible n xn matrices are)...so can we identify some classes
that are? weskevdoo: ¢ laesle & elgeNedters &7)

n AR~ Q,la%\l@)\“bg =)

Some types of matrices appear more frequently than oth-
ers — especially real symmetric n x n matrices (matrix rep-
resentation of second derivatives of (2 functions, quadratic
forms...). e.q. Secand order CondiM oS e o @R migNe
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e Recall that an n X n real matrix A is symmetric if a;; = aj;
for all 4,3, where a;; is the (i,5)t" entry of A.
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Orthonormal Bases

‘L@}‘;‘C

Definition 1. Let
s _[1iri=;
U1 0 0f i )
| ¢ =
A basis V. = {vy,...,vn} of R™ is orthonormal if v; - v; = 51-]-,:“% J

\») l:i‘ad'
In other words, a basis is orthonormal if each basis element has

unit length ( ||v||2 = v; - v; = 1 Vi), and distinct basis elements
are perpendicular (v; -v; = 0 for ¢ # j).
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Orthonormal Bases

Remark: Suppose that =z =
orthonormal basis of R™. Then

(z:: ozjvj> 0

](U] Uk:)

n .
1 O45V; where {v1,...,vp} IS an

T - Vg

n
2

z \ ke
2. %
j=1

Qg

SO

n
T = Z (z-v;)v;
j=1



Orthonormal Bases

Example: The standard basis of R™ is orthonormal.

e:)-_:_ Lr_—_)\ -, \)D)_...)b\ ::—_l)____)\f‘“‘-
(Why?)
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Unitary Matrices

Recall that for a real n x m matrix A, Al denotes the transpose
of A: the (i,5)" entry of AT is the (4,7)!" entry of A.

So the it" row of AT is the " column of A.

Definition 2. A real n x n matrix A is unitary if Al = A—1,

Notice that by definition every unitary matrix is invertible.



Unitary Matrices

Theorem 1. A real n x n matrix A is unitary if and only if the
columns of A are orthonormal.

Proof. Let v; denote the jth column of A. :
A

\
AT=A"1 s aTa=1 = (5:) J6 oay
< Ui'vj:5ij Vi, 9
< {v1,...,vn} is orthonormal
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Unitary Matrices O“’\)@l‘&\}
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If A is unitary, let V be the set of columns of A and W be the

standard basis of R™. Since A is unitary, it is invertible, so V is
d baSIS Of Rn ( i \I\ > =TS N o~ \g \,\J‘\ea-fkb "\,Aqi,@e?_/xcb e:_/'\-\( )

AT — A_l — MtCIZV’W(’I:d) = ({\:\m\%@ ér \DGS;\&'

dandS o \aos 18
Since V is orthonormal, the transformation between bases W

and V preserves all geometry, including lengths and angles.
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Diagonalization of Real Symmetric Matrices

Theorem 2. lLet T ¢ L(R",R") and W be the standard ba-

sis of R"™. Suppose that Mtxy (T) is symmetric. Then the
eigenvectors of 1T' are all real, and there is an orthonormal basis

V = {vq,...,vn} of R™ consisting of eigenvectors of T, so that
Mtxy (T) is diagonalizable:

Mtxw(T) — Mth’V(id) . Mth(T) . Mth,W(id)

where Mtxy/T is diagonal and the change of basis matrices
Mtxy y(id) and Mtxyyy(id) are unitary.

The proof of the theorem requires a lengthy digression into the

linear algebra of complex vector spaces. A brief outline is in the
notes.
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Quadratic Forms

=2
Example: Let +°@ & 7W

— 2 2
f(z) = azi + Briwo + Y75
W ¢ oAee @<, F(x) = x_rf\x ) A Sy

A:%‘g
5

MML‘S‘ <

Let
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so A is symmetric and

N Q

g
z! Az = (21, 72) ( 2 ) ( Tl )
gl 2
= (x1,75) ary + ng
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Quadratic Forms

QBA_(MO\J\ S—QJ’N\ .
Consider a quadratic form

n
2
f@1,..,zn) = ) ogxy + > Bijwix; (1)
i=1 i<
Let N \
ﬁij if 4 . oboNL < 3
) = 1<)
= g
Let
a11 ot Qlp
A= S so f(z) =z ' Ax

V<o g)a_w\md‘f{c.
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Quadratic Forms

A is symmetric, so let V = {vq,...,v,} be an orthonormal basis
of eigenvectors of A with corresponding eigenvalues \1,..., An.
Then A = U'DU = W B
A O - O
where D = O >‘:2 O
| O 0 --- A\
N and U = Mtzyy(id) is unitary
The columns of U (the rows of U) are the coordinates of
v1,...,Un, €xpressed in terms of the standard basis W. Given

x € R", recall

n
x = Z v;v; where v, = x - v;
1=1
13



So

£y = f(=)

Quadratic Forms

= f (Z%‘%‘)

= ( %%)TA<Z%U@) = LA

= ( %vi)TUTDU (> ~ivi)

e USw) DT e T
= ( %Uvi)TD<Z%UUZ) (W Winear)



Quadratic Forms

The equation for a level set of f is

T ¥e = o QLX\ZC%Z{WER”:'Z)\WE:C} C e B

=1

oLIf Aj > Om the level set is an ellipsoid, with principal
axes in the directions v1,...,v,. The length of the principal

axis along wv; is /C/X; if C > 0 (if \; = 0, the level set is
a degenerate ellipsoid with principal axis of infinite length in
that direction). The level set is empty if C < 0.

=) F hes ablell Wi aF D FG) 20 Nx

o \If X; < 0 for all 4, the level set is an ellipsoid, with principal
axes in the directions v1,...,vn. The length of the principal

=) 'R’ \nos %\Q\Q@‘k ot X 6\ L) L0 159 <




axis along wv; is WCV&; if C <0 (if \; = 0, the level set is
a degenerate ellipsoid with principal axis of infinite length in
that direction). The level set is empty if C > 0.

:Llf A; > 0 for some ¢ and >\j < 0 for some j3,) the level set is
a hyperboloid. For example, suppose n = 2, A\1 > 0, A>» < O.
The equation is

C = M7f+ A3
(\/771 + /|22 72) (\/771 — /|2 72)

im N vetgeeX  As ML
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This is a hyperbola with asymptotes
0 = /A171 + /A2l

| A2|
=71 = A\ 2
A1
0 = (\/M%— |>\2|72)
A2
=71 = 2 |72

A1



A,>0,A,>0

Ve,

Tue®R ¥ 0= c,g
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A,>0,A, <0

vi=V 21, Yy

__g, oy o S&M\L PD;\»}? o’S\T Q)

Uxe R - ‘?L?“\;C-E
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Quadratic Forms D e A

This proves the following corollary of Theorem 2.

Corollary 1. Consider the quadratic form (1). L<x N
5 XM o wa f Mol lhasis ok el e~ Jedkers  of Al SXUL Grrespenseng
Ghgpn vedes LN L N

1. f has a global minimum at O if and only if A\; > O for all i, the
level sets of f are ellipsoids with principal axes aligned with
the orthonormal eigenvectors vq,...,vn.

2. f has a global maximum at O if and only if \; < 0 for all i;
the level sets of f are ellipsoids with principal axes aligned
with the orthonormal eigenvectors vy, ..., vn.

18



3. It \; <0 for some i and A\; > O for some j, then f has a saddle
point at O, the level sets of f are hyperboloids with principal
axes aligned with the orthonormal eigenvectors v1,...,vn.



Bounded Linear Maps R

Definition 3. Suppose X,Y are normed vector spaces and
T e L(X,Y). We say T is bounded if

BeR st ||T(@)|y <Blzllx VeeX

Note this implies that T' is Lipschitz with constant §.

\wamé?_éb .
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Bounded Linear Maps

Much more is true:

Theorem 3 (Thms. 4.1, 4.3). Let X and Y be normed vector
spaces and T € L(X,Y). Then

T is continuous at some point xg € X
T is continuous at every x € X
T is uniformly continuous on X
T is Lipschitz

T is bounded

1Tty

Proof. Suppose T' is continuous at xg. Fix € > 0. Then there
exists 6 > 0 such that

Iz —zoll <6 = [|T(2) = T(zo)l| <e

20



Now suppose z is any element of X. If ||y — x| < 6, let z =

2. Yy—T+x0, SO ||z — 20| = |ly — =] <.

~

N 1T (y) — T (x)||
= [|[T(y — )] (T Koo )
= |T(y—z+x0—z0))|]| = \WT(2—>\
= ||T(z) —T(x0)|| (T A ncar )
< €

which proves that T is continuous at every zx, and uniformly
continuous.

We claim that 7T is bounded if and only if T is continuous at O.
Suppose T is not bounded. Then

Hzn} s.t. ||T(zn)|| > nllzn|| VYn
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Note that z,, #0. Let e = 1. Fix
% < 0. Let

I
Ly —

Uy -oll = il

Al
93 | =3

1T (xy,) — T(O)]

\

O

6 > 0 and choose n such that

— 3
8
3

B
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1T (zn) |
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Since this is true for every 6, T is not continuous at 0. Therefore,
T continuous at O implies T" is bounded. Now, suppose T' is
bounded, so find M’SUch that |T(x)|| < M||z|| for every z € X.
Given € > 0, let § =¢/M. Then

|t —0|l<d = |z|| <o
= () = TO)]| = IT@)|| < Mo [ &k & wn)
= |IT() —TO)| <e = mS

so T' is continuous at O.

Thus, we have shown that continuity at some point xg implies
uniform continuity, which implies continuity at every point, which
implies T' is continuous at 0, which implies that 7' is bounded,
which implies that 7' is continuous at O, which implies that 7' is



continuous at some xg, so all of the statements except possibly
the Lipschitz statement are equivalent.

S5 O
Suppose T is bounded, with constant M,. Then
IT(z) =TI = T -yl (T \Vineme )
< Mz —y|

so 1" is Lipschitz with constant M:; conversely, if T is Lipschitz
with constant M, then T is bounded with constant M. So all
the statements are equivalent. [ ]

\ 6 _ Ty \ = A YN < WA\ X o\
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Bounded Linear Maps

Every linear map on a finite-dimensional normed vector space is
bounded (and thus continuous, uniformly continuous, and Lips-
chitz continuous).

Theorem 4 (Thm. 4.5). Let X andY be normed vector spaces,
with dmX =n. Every T € L(X,Y) is bounded.

(~e )
Proof. See de la Fuente. ™ \D
T- . C Wxh= =



“f\x@“\‘l (L\E\%) .—\_\V\,D) o O\
\\. Tk\’&“\\K =V —> O s D 0O

Topological Isomorphism

Definition 4. A topological isomorphism between normed vector
spaces X and Y is a linear transformation T € L(X,Y) that is
invertible (one-to-one, onto), continuous, and has a continuous
inverse.

Two normed vector spaces X andY are topologically isomorphic
if there is a topological isomorphism T : X — Y.

22
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Suppose X and Y are normed vector spaces. We define \ = ((Teo\l fﬁ

B(X,Y) = {T e L(X,Y):T is bounded}

T
Yebne © [Tlpxy) = Sup{” (x)”Y:xex,x;so}

— ] x

= sup{||[T(2)|ly : [=llx =1}

= TN £ LTw bxl ¥xeX Ly &edn o

_—

We sKip the proofs of the rest of these results — read dIF.

L Tol = T\

J—— - Ve \L x
\\ el ,., I u\;\_[,ﬂ/w\\\ - Jl TL u,mﬂ k\
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The Space B(X,Y)

Theorem 5 (Thm. 4.8). Let X,Y be normed vector spaces.
T hen

(B, Ipexy))
IS a normed vector space.

24



The Space B(R"™,R™)
Theorem 6 (Thm. 4.9).Let T ¢ L(R", R™) (= B(R"*,R™))
with matrix A = (a;;) with respect to the standard bases. Let
M = max{|a;j| : 1 <i<m,1<j<n}
Then
M < ||IT|| < Mv/mn

25



Compositions

Theorem 7 (Thm. 4.10). Let Re L(R™,R") and S € L(R"™,RP).
Then

1S o Rl < [IS][|IR]]

26



Vor T = 353 { T =

Invertibility

Define Q(R™) ={T € L(R™,R"™) : T is invertible}

Theorem 8 (Thm. 4.11"). Suppose T € L(R",R"™) and FE is the
standard basis of R™. Then

T is invertible 73 Nl ce AR RSEASR
kerT = {0}

det (Mtz(T)) # O

det <Mth,V(T)) # 0 for every basis V

det <Mta;V7W(T)) # 0 for every pair of bases V,W

111
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Invertibility

Theorem 9 (Thm. 4.12).If S, T €¢ Q(R"™), then SoT € Q(R")
and

(So T)_l =7 1og571!

28



Invertibility

Theorem 10 (Thm. 4.14). Let S, T ¢ L(R™, R"™). If T is invert-
ible and

then S is invertible. In particular, Q2(R™) is open in L(R",R") =
B(R™ R™).

Theorem 11 (Thm. 4.15). The function (1)1 : Q(R") —
Q(R™) that assigns T—1 to each T € Q(R") is continuous.

29









