Announcements

- PS 4 due Tuesday
- comments about exam Thursday in lecture
- exam: available 9 am 8/19
 due 9 am 8/20
 (Berkeley time)
Derivatives

Definition 1. Let $f : I \to \mathbb{R}$, where $I \subseteq \mathbb{R}$ is an open interval. f is differentiable at $x \in I$ if

$$\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = a$$

for some $a \in \mathbb{R}$.

This is equivalent to \(\exists a \in \mathbb{R} \) such that

\[
\lim_{h \to 0} \frac{f(x + h) - (f(x) + ah)}{h} = 0
\]

\(\iff \forall \varepsilon > 0 \ \exists \delta > 0 \text{ s.t. } 0 < |h| < \delta \Rightarrow \frac{|f(x + h) - (f(x) + ah)|}{h} < \varepsilon \)

\(\iff \forall \varepsilon > 0 \ \exists \delta > 0 \text{ s.t. } 0 < |h| < \delta \Rightarrow \frac{|f(x + h) - (f(x) + ah)|}{|h|} < \varepsilon \)

\(\iff \lim_{h \to 0} \frac{|f(x + h) - (f(x) + ah)|}{|h|} = 0 \)

Notice \(T : \mathbb{R} \to \mathbb{R} \) is a linear transformation

\(\iff T(h) = \lambda h \text{ for some } \lambda \in \mathbb{R} \)
Derivatives

Definition 2. If \(X \subseteq \mathbb{R}^n \) is open, \(f : X \to \mathbb{R}^m \) is differentiable at \(x \in X \) if \(\exists T_x \in L(\mathbb{R}^n, \mathbb{R}^m) \) such that

\[
\lim_{h \to 0, h \in \mathbb{R}^n} \frac{\|f(x + h) - (f(x) + T_x(h))\|}{\|h\|} = 0 \tag{1}
\]

\(f \) is differentiable if it is differentiable at all \(x \in X \).

Note that \(T_x \) is uniquely determined by Equation (1).

The definition requires that one linear operator \(T_x \) works no matter how \(h \) approaches zero.

In this case, \(f(x) + T_x(h) \) is the best linear approximation to \(f(x + h) \) for sufficiently small \(h \).
Big-Oh and little-oh

Notation:

• \(y = O(|h|^n) \) as \(h \to 0 \) – read “\(y \) is big-Oh of \(|h|^n \)” – means

\[
\exists K, \delta > 0 \text{ s.t. } |h| < \delta \Rightarrow |y| \leq K|h|^n
\]

\(\frac{\|y\|}{\|h\|^n} \) is bounded as \(h \to 0 \)

• \(y = o(|h|^n) \) as \(h \to 0 \) – read “\(y \) is little-oh of \(|h|^n \)” – means

\[
\lim_{h \to 0} \frac{|y|}{|h|^n} = 0
\]

\(\frac{\|y\|}{\|h\|^n} \to 0 \) as \(h \to 0 \)

• Nested: \(o(\|h\|^n) \Rightarrow O(\|h\|^n) \)

• Note that \(y = O(|h|^{n+1}) \) as \(h \to 0 \) implies \(y = o(|h|^n) \) as \(h \to 0 \).

• Also \(y = O(\|h\|^n) \) or \(y = o(\|h\|^n) \) \(\Rightarrow \) \(y \to 0 \) as \(h \to 0 \).
Using this notation: f is differentiable at x $⇔$ $\exists T_x \in L(\mathbb{R}^n, \mathbb{R}^m)$ such that

$$f(x + h) = f(x) + T_x(h) + o(h) \text{ as } h \to 0$$

$$g(h) = f(x + h) - (f(x) + T_x(h))$$
More Notation

Notation:

- df_x is the linear transformation T_x
- $Df(x)$ is the matrix of df_x with respect to the standard basis.

This is called the **Jacobian** or **Jacobian matrix** of f at x

- $E_f(h) = f(x + h) - (f(x) + df_x(h))$ is the error term

Using this notation,

f is differentiable at $x \iff E_f(h) = o(h)$ as $h \to 0$
What’s $Df(x)$?

Now compute $Df(x) = (a_{ij})$. Let \{e_1, \ldots, e_n\} be the standard basis of \mathbb{R}^n. Look in direction e_j (note that $|\gamma e_j| = |\gamma|$).

$$o(\gamma) = f(x + \gamma e_j) - \left(f(x) + T_x(\gamma e_j)\right) = f(x + \gamma e_j) - \left(f(x) + \begin{pmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \end{pmatrix} + \begin{pmatrix} \gamma a_{1j} \\ \vdots \\ \gamma a_{mj} \end{pmatrix}\right)$$
For \(i = 1, \ldots, m \), let \(f^i \) denote the \(i^{th} \) component of the function \(f: \mathbb{R}^n \to \mathbb{R}^m \) where

\[
\begin{aligned}
f(x) &= (f^1(x), \ldots, f^m(x)) \\
f: \mathbb{R}^n &\to \mathbb{R}^m \\
\end{aligned}
\]

\[
\begin{aligned}
f^i(x + \gamma e_j) - (f^i(x) + \gamma a_{ij}) &= o(\gamma) \\
\text{so } a_{ij} &= \frac{\partial f^i}{\partial x_j}(x)
\end{aligned}
\]
Derivatives and Partial Derivatives

Theorem 1 (Thm. 3.3). Suppose $X \subseteq \mathbb{R}^n$ is open and $f : X \to \mathbb{R}^m$ is differentiable at $x \in X$. Then $\frac{\partial f^i}{\partial x_j}(x)$ exists for $1 \leq i \leq m$, $1 \leq j \leq n$, and

$$Df(x) = \begin{pmatrix}
\frac{\partial f^1}{\partial x_1}(x) & \cdots & \frac{\partial f^1}{\partial x_n}(x) \\
\vdots & \ddots & \vdots \\
\frac{\partial f^m}{\partial x_1}(x) & \cdots & \frac{\partial f^m}{\partial x_n}(x)
\end{pmatrix}$$

i.e. the Jacobian at x is the matrix of partial derivatives at x.
Derivatives and Partial Derivatives

Remark: If f is differentiable at x, then all first-order partial derivatives $\frac{\partial f}{\partial x_j}$ exist at x. However, the converse is false: existence of all the first-order partial derivatives does not imply that f is differentiable.

The missing piece is continuity of the partial derivatives:

Theorem 2 (Thm. 3.4). If all the first-order partial derivatives $\frac{\partial f^i}{\partial x_j}$ ($1 \leq i \leq m$, $1 \leq j \leq n$) exist and are continuous at x, then f is differentiable at x.

$$
\begin{cases}
\frac{x_1 x_2}{x_1^2 + x_2^2} & (x_1, x_2) \neq (0, 0) \\
0 & (x_1, x_2) = (0, 0)
\end{cases}
$$
Directional Derivatives

Suppose $X \subseteq \mathbb{R}^n$ open, $f : X \to \mathbb{R}^m$ is differentiable at x, and $|u| = 1$. \If $u \in \mathbb{R}^n$, $\gamma u \to 0$ as $\gamma \to 0$ \If $\|\gamma u\| = \|u\| = 1$

$$f(x + \gamma u) - (f(x) + T_x(\gamma u)) = o(\gamma) \text{ as } \gamma \to 0$$

$$\Rightarrow f(x + \gamma u) - (f(x) + \gamma T_x(u)) = o(\gamma) \text{ as } \gamma \to 0 \quad \text{(Taylor Linear)}$$

$$\Rightarrow \lim_{\gamma \to 0} \frac{f(x + \gamma u) - f(x)}{\gamma} = T_x(u) = Df(x)u \quad \text{\small by } df_x(u)$$

i.e. the directional derivative in the direction u (with $|u| = 1$) is

$$Df(x)u \in \mathbb{R}^m$$
Chain Rule

Theorem 3 (Thm. 3.5, Chain Rule). Let $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$ be open, $f : X \to Y$, $g : Y \to \mathbb{R}^p$. Let $x_0 \in X$ and $F = g \circ f$. If f is differentiable at x_0 and g is differentiable at $f(x_0)$, then $F = g \circ f$ is differentiable at x_0 and

$$dF_{x_0} = dg_{f(x_0)} \circ df_{x_0}$$

(composition of linear transformations)

$$DF(x_0) = Dg(f(x_0))Df(x_0)$$

(matrix multiplication)

Remark: The statement is exactly the same as in the univariate case, except we replace the univariate derivative by a linear transformation. The proof is more or less the same, with a bit of linear algebra added.
Mean Value Theorem

Theorem 4 (Thm. 1.7, Mean Value Theorem, Univariate Case). Let \(a, b \in \mathbb{R} \). Suppose \(f : [a, b] \to \mathbb{R} \) is continuous on \([a, b]\) and differentiable on \((a, b)\). Then there exists \(c \in (a, b) \) such that

\[
\frac{f(b) - f(a)}{b - a} = f'(c)
\]

that is, such that

\[
f(b) - f(a) = f'(c)(b - a)
\]

Proof. Consider the function \(g : [a, b] \to \mathbb{R} \)

\[
g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)
\]

Note \(g(a) = g(b) = 0 \).
Then \(g(a) = 0 = g(b) \). Note that for \(x \in (a, b) \),

\[
g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}
\]

so it suffices to find \(c \in (a, b) \) such that \(g'(c) = 0 \).

Case I: If \(g(x) = 0 \) for all \(x \in [a, b] \), choose an arbitrary \(c \in (a, b) \), and note that \(g'(c) = 0 \), so we are done.

Case II: Suppose \(g(x) > 0 \) for some \(x \in [a, b] \). Since \(g \) is continuous on \([a, b]\), it attains its maximum at some point \(c \in (a, b) \). Since \(g \) is differentiable at \(c \) and \(c \) is an interior point of the domain of \(g \), we have \(g'(c) = 0 \), and we are done.

Case III: If \(g(x) < 0 \) for some \(x \in [a, b] \), the argument is similar to that in Case II. □
$f(x) = f(a) + \frac{f(b) - f(a)}{b - a} (x - a)$

$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a} (x - a)$
Mean Value Theorem

Notation:

\[\ell(x, y) = \{ \alpha x + (1 - \alpha)y : \alpha \in [0, 1] \} \]

is the line segment from \(x \) to \(y \). \(x, y \in \mathbb{R}^n \)

Theorem 5 (Mean Value Theorem). *Suppose \(f : \mathbb{R}^n \to \mathbb{R} \) is differentiable on an open set \(X \subseteq \mathbb{R}^n \), \(x, y \in X \) and \(\ell(x, y) \subseteq X \). Then there exists \(z \in \ell(x, y) \) such that*

\[
f(y) - f(x) = Df(z)(y - x)
\]

Consider \(\overline{f} : [0, 1] \to \mathbb{R} \) given by

\[
\overline{f}(\alpha) = f(\alpha x + (1-\alpha)y)
\]
\[f = (f_1, \ldots, f_m), \quad f_i : \mathbb{R}^n \to \mathbb{R} \] \[\] Notice that the statement is exactly the same as in the univariate case. For \(f : \mathbb{R}^n \to \mathbb{R}^m \), we can apply the Mean Value Theorem to each component, to obtain \(z_1, \ldots, z_m \in \ell(x, y) \) such that
\[f^i(y) - f^i(x) = Df^i(z_i)(y - x) \]
However, we cannot find a single \(z \) which works for every component.

Note that each \(z_i \in \ell(x, y) \subset \mathbb{R}^n \); there are \(m \) of them, one for each component in the range.
Mean Value Theorem

Theorem 6. Suppose $X \subset \mathbb{R}^n$ is open and $f : X \to \mathbb{R}^m$ is differentiable. If $x, y \in X$ and $\ell(x, y) \subseteq X$, then there exists $z \in \ell(x, y)$ such that

\[
\|f(y) - f(x)\| \leq \|df_z(y - x)\| = \|Df(z)(y - x)\| \\
\leq \|df_z\|\|y - x\|
\]
Mean Value Theorem

Remark: To understand why we don’t get equality, consider $f : [0, 1] \to \mathbb{R}^2$ defined by

$$f(t) = (\cos 2\pi t, \sin 2\pi t)$$

f maps $[0, 1]$ to the unit circle in \mathbb{R}^2. Note that $f(0) = f(1) = (1, 0)$, so $|f(1) - f(0)| = 0$. However, for any $z \in [0, 1]$,

$$|df_z(1 - 0)| = |2\pi (-\sin 2\pi z, \cos 2\pi z)|$$

$$= 2\pi \sqrt{\sin^2 2\pi z + \cos^2 2\pi z}$$

$$= 2\pi$$

So $f(1) - f(0) \neq df_z(1 - 0) \forall z \in [0, 1]$.
Taylor’s Theorem – \mathbb{R}

Theorem 7 (Thm. 1.9, Taylor’s Theorem in \mathbb{R}). Let $f : I \to \mathbb{R}$ be n-times differentiable, where $I \subseteq \mathbb{R}$ is an open interval. If $x, x + h \in I$, then

$$f(x + h) = f(x) + \sum_{k=1}^{n-1} \frac{f^{(k)}(x)h^k}{k!} + E_n$$

where $f^{(k)}$ is the k^{th} derivative of f and

$$E_n = \frac{f^{(n)}(x + \lambda h)h^n}{n!} \text{ for some } \lambda \in (0, 1)$$

order error term or "remainder"
Motivation: Let

\[T_n(h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^k}{k!} \]

\[= f(x) + f'(x)h + \frac{f''(x)h^2}{2} + \cdots + \frac{f^{(n)}(x)h^n}{n!} \]

\[T_n(0) = f(x) \]

\[T'_n(h) = f'(x) + f''(x)h + \cdots + \frac{f^{(n)}(x)h^{n-1}}{(n-1)!} \]

\[T'_n(0) = f'(x) \]

\[T''_n(h) = f''(x) + \cdots + \frac{f^{(n)}(x)h^{n-2}}{(n-2)!} \]

\[T''_n(0) = f''(x) \]

\[\vdots \]

\[T^{(n)}_n(0) = f^{(n)}(x) \]
so $T_n(h)$ is the unique n^{th} degree polynomial such that

\[
\begin{align*}
T_n(0) &= f(x) \\
T_n'(0) &= f'(x) \\
& \vdots \\
T_n^{(n)}(0) &= f^{(n)}(x)
\end{align*}
\]
Taylor’s Theorem – R

Theorem 8 (Alternate Taylor’s Theorem in R). Let $f : I \to \mathbb{R}$ be n times differentiable, where $I \subseteq \mathbb{R}$ is an open interval and $x \in I$. Then

$$f(x + h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^k}{k!} + o(h^n) \text{ as } h \to 0$$

If f is $(n + 1)$ times continuously differentiable, then

$$f(x + h) = f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(x)h^k}{k!} + O\left(h^{n+1}\right) \text{ as } h \to 0$$

Remark: The first equation in the statement of the theorem is essentially a restatement of the definition of the n^{th} derivative. The second statement is proven from Theorem 1.9, and the continuity of the derivative.
\(C^k \) Functions

Definition 3. Let \(X \subseteq \mathbb{R}^n \) be open. A function \(f : X \to \mathbb{R}^m \) is continuously differentiable on \(X \) if

- \(f \) is differentiable on \(X \) and

\[df : X \to L(\mathbb{R}^n, \mathbb{R}^m) \]

- \(df_x \) is a continuous function of \(x \) from \(X \) to \(L(\mathbb{R}^n, \mathbb{R}^m) \), with respect to the operator norm \(\|df_x\| \)

\(f \) is \(C^k \) if all partial derivatives of order \(\leq k \) exist and are continuous in \(X \).
C^k Functions

Theorem 9 (Thm. 4.3). Suppose $X \subseteq \mathbb{R}^n$ is open and $f : X \rightarrow \mathbb{R}^m$. Then f is continuously differentiable on X if and only if f is C^1.
Taylor’s Theorem – Linear Terms

Theorem 10. Suppose $X \subseteq \mathbb{R}^n$ is open and $x \in X$. If $f : X \to \mathbb{R}^m$ is differentiable, then

$$f(x + h) = f(x) + Df(x)h + o(h) \text{ as } h \to 0$$

This is essentially a restatement of the definition of differentiability.
Taylor's Theorem – Linear Terms

Theorem 11 (Corollary of 4.4). Suppose $X \subseteq \mathbb{R}^n$ is open and $x \in X$. If $f : X \to \mathbb{R}^m$ is C^2, then

$$f(x + h) = f(x) + Df(x)h + O(|h|^2) \text{ as } h \to 0$$
Taylor’s Theorem – Quadratic Terms

We treat each component of the function separately, so consider $f : X \rightarrow \mathbb{R}$, $X \subseteq \mathbb{R}^n$ an open set. Let

$$D^2 f(x) = \begin{pmatrix}
\frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1}(x) \\
\frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_1 \partial x_n}(x) & \cdots & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x)
\end{pmatrix}$$

$f \in C^2 \Rightarrow \frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x)$

$\Rightarrow D^2 f(x)$ is symmetric

$\Rightarrow D^2 f(x)$ has eigenvectors that are an orthonormal basis and thus can be diagonalized
Taylor’s Theorem – Quadratic Terms

Theorem 12 (Stronger Version of Thm. 4.4). Let $X \subseteq \mathbb{R}^n$ be open, $f : X \rightarrow \mathbb{R}$, $f \in C^2(X)$, and $x \in X$. Then

$$f(x + h) = f(x) + Df(x)h + \frac{1}{2}h^\top (D^2 f(x))h + o\left(|h|^2\right) \text{ as } h \rightarrow 0$$

If $f \in C^3$,

$$f(x + h) = f(x) + Df(x)h + \frac{1}{2}h^\top (D^2 f(x))h + O\left(|h|^3\right) \text{ as } h \rightarrow 0$$
Characterizing Critical Points

Definition 4. We say f has a saddle at x if $Df(x) = 0$ but f has neither a local maximum nor a local minimum at x.

$f: \mathbb{R}^n \to \mathbb{R}$

f has a critical point at x if $Df(x) = 0$. \hfill 27
Characterizing Critical Points

Corollary 1. Suppose $X \subseteq \mathbb{R}^n$ is open and $x \in X$. If $f : X \to \mathbb{R}$ is C^2, there is an orthonormal basis \(\{v_1, \ldots, v_n\} \) and corresponding eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ of $D^2f(x)$ such that

\[
\begin{align*}
 f(x + h) &= f(x + \gamma_1 v_1 + \cdots + \gamma_n v_n) \\
 &= f(x) + \sum_{i=1}^{n} (Df(x)v_i) \gamma_i + \frac{1}{2} \sum_{i=1}^{n} \lambda_i \gamma_i^2 + o(\|\gamma\|^2)
\end{align*}
\]

where $\gamma_i = h \cdot v_i$.

1. If $f \in C^3$, we may strengthen $o(\|\gamma\|^2)$ to $O(\|\gamma\|^3)$.

2. If f has a local maximum or local minimum at x, then

\[Df(x) = 0\]
3. If $Df(x) = 0$, then

- $\lambda_1, \ldots, \lambda_n > 0 \Rightarrow f$ has a local minimum at x
- $\lambda_1, \ldots, \lambda_n < 0 \Rightarrow f$ has a local maximum at x
- $\lambda_i < 0$ for some i, $\lambda_j > 0$ for some $j \Rightarrow f$ has a saddle at x
- $\lambda_1, \ldots, \lambda_n \geq 0$, $\lambda_i > 0$ for some $i \Rightarrow f$ has a local minimum or a saddle at x
- $\lambda_1, \ldots, \lambda_n \leq 0$, $\lambda_i < 0$ for some $i \Rightarrow f$ has a local maximum or a saddle at x
- $\lambda_1 = \cdots = \lambda_n = 0$ gives no information.
Proof. (Sketch) From our study of quadratic forms, we know the behavior of the quadratic terms is determined by the signs of the eigenvalues. If \(\lambda_i = 0 \) for some \(i \), then we know that the quadratic form arising from the second partial derivatives is identically zero in the direction \(v_i \), and the higher derivatives will determine the behavior of the function \(f \) in the direction \(v_i \). For example, if \(f(x) = x^3 \), then \(f'(0) = 0 \), \(f''(0) = 0 \), but we know that \(f \) has a saddle at \(x = 0 \); however, if \(f(x) = x^4 \), then again \(f'(0) = 0 \) and \(f''(0) = 0 \) but \(f \) has a local (and global) minimum at \(x = 0 \). \(\square \)
\[(-1)^n (\lambda - c_1) \cdots (\lambda - c_n) = \det (A - \lambda I) \]

\[\prod_{i=1}^{n} (c_i - \lambda) = \det (A - \lambda I) \]

\[V = \{ v_\lambda : \lambda \in \mathbb{R} \} \quad U = \{ u_\lambda : \lambda \in \mathbb{R} \} \]

\[x \in X \Rightarrow \exists \{ u_\lambda \} \in U \quad \forall \phi \in F \]

\[x = \sum_{i=1}^{n} a_i v_i \quad \text{s.t.} \quad x = \sum_{i=1}^{n} a_i v_i \]
\[u = T(v), \quad u \neq 0 \]

\[\Rightarrow T(\lambda u) = T^2(v) = T(v) = u \]

\[\lambda = 1 \]

\[x \in \ker(T), \quad x \neq 0, \quad T(x) = 0 = 0 \cdot x \Rightarrow x \text{ eigenvector} \]

\[\lambda = 0 \]

\[\text{Range } T = \mathbb{R}^r, \quad r \leq n \]

Choose \(\{u_1, \ldots, u_r\} \) basis for \(\text{Im } T \)

\[\dim \ker T = n - r \]
\[W = \{ x \in \mathbb{R}^3 : x_1 = x_2 = 0 \} = \{ x \in \mathbb{R}^3 : (0, 0, z) \} \]

\[W \subseteq \mathbb{R}^3 \text{ vector subspace for some } z \in \mathbb{R} \]

\[\dim W = 1 \]

\[(0, 0, 1) \]

\[W = U \]