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Taylor’s Theorem – Quadratic Terms

Theorem 12 (Stronger Version of Thm. 4.4). Let X ⊆ Rn be

open, f : X → R, f ∈ C2(X), and x ∈ X. Then

f(x + h) = f(x) + Df(x)h +
1

2
h>(D2f(x))h + o

(

|h|2
)

as h → 0

If f ∈ C3,

f(x + h) = f(x) + Df(x)h +
1

2
h>(D2f(x))h + O

(

|h|3
)

as h → 0
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Characterizing Critical Points

Definition 4. We say f has a saddle at x if Df(x) = 0 but f has

neither a local maximum nor a local minimum at x.
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Characterizing Critical Points

Corollary 1. Suppose X ⊆ Rn is open and x ∈ X. If f : X → R is

C2, there is an orthonormal basis {v1, . . . , vn} and corresponding

eigenvalues λ1, . . . , λn ∈ R of D2f(x) such that

f(x + h) = f(x + γ1v1 + · · · + γnvn)

= f(x) +
n

∑

i=1

(Df(x)vi) γi +
1

2

n
∑

i=1

λiγ
2
i + o

(

|γ|2
)

where γi = h · vi.

1. If f ∈ C3, we may strengthen o
(

|γ|2
)

to O
(

|γ|3
)

.

2. If f has a local maximum or local minimum at x, then

Df(x) = 0
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3. If Df(x) = 0, then

• λ1, . . . , λn > 0 ⇒ f has a local minimum at x

• λ1, . . . , λn < 0 ⇒ f has a local maximum at x

• λi < 0 for some i, λj > 0 for some j ⇒ f has a saddle at

x

• λ1, . . . , λn ≥ 0, λi > 0 for some i ⇒ f has a local minimum

or a saddle at x

• λ1, . . . , λn ≤ 0, λi < 0 for some i ⇒ f has a local maximum

or a saddle at x

• λ1 = · · · = λn = 0 gives no information.



Proof. (Sketch) From our study of quadratic forms, we know

the behavior of the quadratic terms is determined by the signs

of the eigenvalues. If λi = 0 for some i, then we know that

the quadratic form arising from the second partial derivatives is

identically zero in the direction vi, and the higher derivatives will

determine the behavior of the function f in the direction vi. For

example, if f(x) = x3, then f ′(0) = 0, f ′′(0) = 0, but we know

that f has a saddle at x = 0; however, if f(x) = x4, then again

f ′(0) = 0 and f ′′(0) = 0 but f has a local (and global) minimum

at x = 0.



Comparative Statics

In many problems we are interested in how endogenously deter-

mined variables are affected by exogenously given parameters.

Here we study problems in which the variables of interest are

characterized as solutions to a parameterized family of equa-

tions.

To formalize, let X ⊆ Rn and A ⊆ Rp be open, and let f : X×A →

Rm. For a given a ∈ A, consider solutions x ∈ X to the family of

equations

f(x, a) = 0

We want to characterize the set of solutions and study how this

set depends on the parameter a.
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An Example

Consider the function f : (0,2π) × R → R defined by

f(x, a) = sinx + a

Let X = (0,2π). For fixed a, let

fa(x) = f(x, a) = sinx + a

We look for solutions x ∈ (0,2π) to the equation

fa(x) = f(x, a) = sinx + a = 0

that is, the x ∈ (0,2π) such that

sinx = −a

Let Ψ : A → 2X denote the solution correspondence, so

Ψ(a) = {x ∈ (0,2π) : fa(x) = sinx + a = 0}
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An Example

Start with a = 0. For x ∈ (0,2π),

f0(x) = sinx = 0 ⇐⇒ x = π

so Ψ(0) = {π}.

Notice that for x near π, for example in the neighborhood (π/2,3π/2),

and for a near 0, sin−1(a) remains single-valued and depends

smoothly on a.

In addition, we can predict the direction of change: x is increasing

in a.

4



� � �� � � � � � � �

�

� �

�

�

	 
 � � �  � � � �

	 � � � � �  � � � � � �

	 � � � �  � � � � � �

5



An Example

Now consider a = 1. For x ∈ (0,2π),

f1(x) = sinx + 1 = 0

⇐⇒ sinx = −1

⇐⇒ x =
3π

2

So Ψ(1) = {3π/2}.

But note that for a′ > 1, Ψ(a′) = ∅, while for a < 1 close to

1, there are two solutions near 3π/2, one above and one below

3π/2.

Ψ is not lower hemicontinuous at a = 1.
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Regular and Critical Points and Values

Suppose X ⊆ Rn is open. Suppose f : X → Rm is differentiable

at x ∈ X, and let W = {e1, . . . , en} denote the standard basis of

Rn. Then dfx ∈ L(Rn,Rm), and

Rank dfx = dim Im(dfx)

= dimspan {dfx(e1), . . . , dfx(en)}

= dimspan {Df(x)e1, . . . , Df(x)en}

= dimspan {column 1 of Df(x), . . . , column n of Df(x)}

= RankDf(x)

Thus,

Rank dfx ≤ min{m,n}

We say dfx has full rank if Rank dfx = min{m, n}, that is, is dfx

has maximum possible rank.
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Regular and Critical Points and Values

Definition 1. Suppose X ⊆ Rn is open. Suppose f : X → Rm is

differentiable on X.

• x is a regular point of f if Rank dfx = min{m, n}.

• x is a critical point of f if Rank dfx < min{m, n}.

• y is a critical value of f if there exists x ∈ f−1(y) such that

x is a critical point of f .

• y is a regular value of f if y is not a critical value of f
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Example: Consider the function g : (0,2π) → R defined by

g(x)(= f0(x)) = sinx

Note that g′(x) = cosx, so g′(x) = 0 ⇐⇒ x = π/2 or x = 3π/2.

Dg(x) is the 1 × 1 matrix (g′(x)), so

Rank dgx = RankDg(x) = 1 ⇐⇒ g′(x) 6= 0

critical points of g: π/2 and 3π/2

regular points of g:
(

0, π
2

)

∪
(

π
2, 3π

2

)

∪
(

3π
2 ,2π

)

critical values of g: g(π/2) = sin(π/2) = 1 and g(3π/2) =

sin(3π/2) = −1

regular values of g: (−∞,−1) ∪ (−1, 1) ∪ (1,∞)
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In particular, notice that 0 is not a critical value of g.

Given a ∈ R, as above consider the perturbed function

fa(x) = g(x) + a

Notice that f ′
a(x) = g′(x), so the critical points of fa are the

same as those of g, π/2 and 3π/2.

For a close to zero, the solution to the equation

fa(x) = 0

near x = π moves smoothly with respect to changes in a. The

direction the solution moves is determined by the sign of f ′
a.

Now let a = 1. Since 3π/2 is a critical point of f1, 0 is a critical

value of f1.



Inverse Function Theorem

Theorem 1 (Thm. 4.6, Inverse Function Theorem). Suppose

X ⊆ Rn is open, f : X → Rn is C1 on X, and x0 ∈ X. If

detDf(x0) 6= 0 (i.e. x0 is a regular point of f) then there are

open neighborhoods U of x0 and V of f(x0) such that

f : U → V is one-to-one and onto

f−1 : V → U is C1

Df−1(f(x0)) = [Df(x0)]
−1

If in addition f ∈ Ck, then f−1 ∈ Ck.

Remark: f is one-to-one only on U; it need not be one-to-one

globally. Thus f−1 is only a local inverse.
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Proof. Read the proof in de la Fuente. This is pretty hard. The

idea is that since detDf(x0) 6= 0, then dfx0 : Rn → Rn is one-

to-one and onto. You need to find a neighborhood U of x0

sufficiently small such that the Contraction Mapping Theorem

implies that f is one-to-one and onto.

To see the formula for Df−1, let idU denote the identity function

from U to U and I denote the n × n identity matrix. Then

Df−1(f(x0))Df(x0) = D(f−1 ◦ f)(x0)

= D( idU(x0))

= I

⇒ Df−1(f(x0)) = [Df(x0)]
−1





Inverse Function Theorem

Example: Let g : (0,2π) → R be given by g(x) = sinx. Let

x0 = π.

Then g′(x0) = cosπ = −1 6= 0, so by the Inverse Function

Theorem there exists an open set U ⊆ (0,2π) with π ∈ U, an

open set V ⊆ R with 0 = g(π) ∈ V and a C1 function h : V → U

such that g(h(v)) = v for all v ∈ V .

At x = 3π/2, g′(x) = cos(3π/2) = 0, and g has no local inverse

function there: for every open neighborhood U of 3π/2 and every

open neighborhood V of −1 = g(3π/2), there exists v ∈ V and

x1 6= x2 ∈ U such that

g(x1) = sinx1 = v = sinx2 = g(x2)
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Implicit Function Theorem

Theorem 2 (Thm. 2.2, Implicit Function Theorem). Suppose

X ⊆ Rn and A ⊆ Rp are open and f : X×A → Rn is C1. Suppose

f(x0, a0) = 0 and det(Dxf(x0, a0)) 6= 0, i.e. x0 is a regular point

of f(·, a0). Then there are open neighborhoods U of x0 (U ⊆ X)

and W of a0 such that

∀a ∈ W ∃!x ∈ U s.t. f(x, a) = 0

For each a ∈ W let g(a) be that unique x. Then g : W → X is

C1 and

Dg(a0) = − [Dxf(x0, a0)]
−1 [Daf(x0, a0)]

If in addition f ∈ Ck, then g ∈ Ck.
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Proof. Use the Inverse Function Theorem in the right way. Why

is the formula for Dg correct? Assuming the implicit function

exists and is differentiable,

0 = Df(g(a), a)(a0)

= Dxf(x0, a0)Dg(a0) + Daf(x0, a0)

Dg(a0) = −[Dxf(x0, a0)]
−1Daf(x0, a0)



Implicit Function Theorem

Corollary 1. Suppose X ⊆ Rn and A ⊆ Rp are open and f :

X × A → Rn is C1. If 0 is a regular value of f(·, a0), then the

correspondence

a 7→ {x ∈ X : f(x, a) = 0}

is lower hemicontinuous at a0.

Proof. If 0 is a regular value of f(·, a0), then given any x0 ∈

{x ∈ X : f(x, a0) = 0}, we can find a local implicit function

g; in other words, if a is sufficiently close to a0, then g(a) ∈

{x ∈ X : f(x, a) = 0}; the continuity of g then shows that the

correspondence {x ∈ X : f(x, a) = 0} is lower hemicontinuous at

a0.
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Implicit Function Theorem

Example: Back to our opening example: f : (0,2π) × R → R

given by f(x, a) = sinx + a. Let x0 = π and a0 = 0.

Then f(x0, a0) = sinπ = 0 and Dxf(x0, a0) = cosπ = −1 6= 0.

So x0 = π is a regular point of f(·, a0).

By the Implicit Function Theorem, ∃ open neighborhoods U 3 π

and W 3 0 and a C1 function h : W → U such that f(h(a), a) = 0

for every a ∈ W , and

Dh(a0) = −[cos π]−1 · 1 = 1

So the local solution is increasing in a near a0 (as we saw above).
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Again at x = 3π/2 and a = 1, Dxf(x, a) = 0 and no local implicit

function exists:

for every open neighborhood U of 3π/2 and W of 1, for any

a′ > 1 there is no x′ ∈ U such that f(x′, a′) = sinx′ + a′ = 0.



Lebesgue Measure Zero

Definition 2. Suppose A ⊆ Rn. A has Lebesgue measure zero

if for every ε > 0 there is a countable collection of rectangles

I1, I2, . . . such that

∞
∑

k=1

Vol (Ik) < ε and A ⊆
∞
⋃

k=1

Ik

Here by a rectangle we mean Ik = ×n
j=1(a

k
j , bk

j ) for some

ak
j < bk

j ∈ R, and

Vol (Ik) =
n

∏

j=1

|bk
j − ak

j |

Notice that this defines Lebesgue measure zero without defining

Lebesgue measure.
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Lebesgue Measure Zero

Examples:

1. “Lower-dimensional” sets have Lebesgue measure zero. For

example,

A = {x ∈ R2 : x2 = 0}

has measure zero.
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2. Any finite set has Lebesgue measure zero in Rn.

3. If An has Lebesgue measure zero ∀n then ∪n∈NAn has Lebesgue

measure zero.

4. Q and every countable set has Lebesgue measure zero.
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5. No open set in Rn has Lebesgue measure zero.

If O ⊂ Rn is open, then there exists a rectangle R such

that R̄ ⊆ O and such that Vol (R) = r > 0. If {Ij} is any

collection of rectangles such that O ⊆ ∪∞
j=1Ij, then R̄ ⊆ O ⊆

∪∞
j=1Ij, so

∑∞
j=1 Vol (Ij) ≥ Vol (R) = r > 0.
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Genericity

Lebesgue measure zero is a natural formulation of the notion

that A is a small set. Without specifying a probability measure

explicitly, this expresses the idea that if x ∈ Rn is chosen at

random, then the probability that x ∈ A is zero.

A function may have many critical points; for example, if a func-

tion is constant on an interval, then every element of the interval

is a critical point. But it can’t have many critical values.
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Sard’s Theorem

Theorem 3 (Thm. 2.4, Sard’s Theorem). Let X ⊆ Rn be open,

and f : X → Rm be Cr with r ≥ 1+max{0, n−m}. Then the set

of all critical values of f has Lebesgue measure zero.

Proof. First, we give a false proof that conveys the essential idea

as to why the theorem is true; it can be turned into a correct

proof. Suppose m = n. Let C be the set of critical points of f ,

V the set of critical values. Then

Vol (V ) = Vol (f(C))

≤
∫

C
|detDf(x)| dx (equality if f is one-to-one)

=
∫

C
0 dx

= 0
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Now, we outline how to turn this into a proof. First, show that

we can write X = ∪j∈NXj, where each Xj is a compact subset

of [−j, j]n. Let Cj = C ∩ Xj. Fix j for now. Since f is C1,

xk → x ⇒ detDf(xk) → detDf(x)

{xk} ⊆ Cj, xk → x ⇒ detDf(x) = 0 ⇒ x ∈ Cj

so Cj is closed, hence compact. Since X is open and Cj is

compact, there exists δ1 > 0 such that

Bδ1[Cj] = ∪x∈Cj
Bδ1[x] ⊆ X

Bδ1[Cj] is bounded, and, using the compactness of Cj, one can

show it is closed, so it is compact. Since detDf(x) is continuous

on Bδ1[Cj], it is uniformly continuous on Bδ1[Cj]. Then given

ε > 0, we can find δ ≤ δ1 such that Bδ[Cj] ⊆ [−2j,2j]n and

x ∈ Bδ[Cj] ⇒ |detDf(x)| ≤
ε

2 · 4njn



Then

f(Cj) ⊆ f(Bδ[Cj])

Vol (f(Bδ[Cj])) ≤
∫

[−2j,2j]n

ε

2 · 4njn
dx

=
ε

2

Since f is C1, show that f(Cj) can be covered by a countable

collection of rectangles of total volume less than ε. Since ε > 0

is arbitrary, f(Cj) has Lebesgue measure zero. Then

f(C) = f
(

∪j∈NCj

)

= ∪n∈Nf(Cj)

is a countable union of sets of Lebesgue measure zero, so f(C)

has Lebesgue measure zero.



Sard’s Theorem

Remark: Sard’s Theorem has a number of powerful implica-

tions. Given a randomly chosen function f , it is very unlikely

that zero will be a critical value of f . If by some fluke zero is

a critical value of f , then a slight perturbation of f will make

zero a regular value. We return to a more wide-ranging version

of this statement below.

Example: Let g : (0,2π) → R be given by g(x) = sinx. We

calculated by hand above that the set of critical values of g is

{−1,1}. Since this set is finite, it has Lebesgue measure zero.
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Transversality

Let g : Rn → Rn be C1. Consider the family of n equations in n

variables:

g(x) = 0

Suppose for some x such that g(x) = 0, rank (Dg(x)) < n. That

is, some x ∈ g−1(0) is a critical point of g, thus 0 is a critical

value of g.

By Sard’s Theorem, almost every a 6= 0 is a regular value of g.

So for a outside a set of Lebesgue measure 0, Dg(x) has full rank

for every x solving g(x) = a. For any such a and any x ∈ g−1(a),

we can use the Inverse Function Theorem to show that a local

inverse x(a) exists, and give a formula for Dx(a).
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Transversality

Suppose f : Rn × Rp → Rm. We care about the parameterized

family of equations

f(x, a) = 0

where, as above, we interpret a ∈ Rp to be a vector of parameters

that indexes the function f(·, a).

For a given a, we are interested in the set of solutions

{x ∈ X : f(x, a) = 0}

and the way that this correspondence depends on a.

If f is separable in a, that is, f(x, a) = g(x)+ a, then we can use

Sard’s Theorem (PS6 2010).
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Transversality Theorem

Separability is strong, and not required: If f depends on a in

a nonseparable fashion, it is enough that from any solution

f(x, a) = 0, any directional change in f can be achieved by arbi-

trarily small changes in x and a.

Theorem 4 (Thm. 2.5’, Transversality Theorem). Let X ⊆ Rn

and A ⊆ Rp be open, and f : X × A → Rm be Cr with r ≥

1+max{0, n−m}. Suppose that 0 is a regular value of f . Then

there is a set A0 ⊆ A such that A \ A0 has Lebesgue measure

zero and for all a ∈ A0, 0 is a regular value of fa = f(·, a).
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Remark: Notice the important difference between the statement

that 0 is a regular value of f (one of the assumptions of the

Transversality Theorem), and the statement that 0 is a regular

value of fa for a fixed a ∈ A0 (part of the conclusion of the

Transversality Theorem). 0 is a regular value of f if and only

if Df(x, a) has full rank for every (x, a) such that f(x, a) = 0.

Instead, for fixed a0 ∈ A0, 0 is a regular value of fa0 = f(·, a0) if

and only if Dxf(x, a0) has full rank for every x such that fa0(x) =

f(x, a0) = 0.
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Remark: Consider the important special case in which n = m,

so we have as many equations (m) as endogenous variables (n).

In this case, suppose f is C1 (note that 1 = 1 + max{0, n − n}).

If 0 is a regular value of f , that is, Df(x, a) has rank n = m

for every (x, a) such that f(x, a) = 0, then by the Transversality

Theorem there is a set A0 ⊂ A such that A \ A0 has Lebesgue

measure zero and for every a0 ∈ A0, Dxf(x, a0) has rank n = m

for all x such that f(x, a0) = 0.

Fix a0 ∈ A0 and x0 such that f(x0, a0) = 0. By the Implicit

Function Theorem, there exist open sets A∗ containing a0 and

X∗ containing x0, and a C1 function x : A∗ → X∗ such that

• x(a0) = x0
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• f(x(a), a) = 0 for every a ∈ A∗

• if (x, a) ∈ X∗ × A∗ then

f(x, a) = 0 ⇐⇒ x = x(a)

that is, x0 is locally unique, and x(a) is locally unique for

each a ∈ A∗

• Dx(a0) = −[Dxf(x0, a0)]
−1Daf(x0, a0)



Transversality

Example: Back to the opening example: f : (0,2π) × R → R

given by f(x, a) = sinx + a.

For any (x, a) such that f(x, a) = 0, Df(x, a) = (cosx, 1) which

has rank 1 = min{2,1}. Thus 0 is a regular value of f .

Set A0 = R\{−1, 1}. Since {−1,1} is a finite set, it has Lebesgue

measure zero in R.

Again we have already calculated by hand that for any a ∈ A0, 0

is a regular value of fa = f(·, a).
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