A I

Econ 204 2020

Lecture 13

Outline

. N aasdes SedAa ) Te sy o

Fixed Points for Functions
Brouwer's Fixed Point Theorem
Fixed Points for Correspondences
Kakutani’s Fixed Point Theorem
Separating Hyperplane Theorems



Transversality

Suppose f : R" x RP — R™. We care about the parameterized
family of equations

flz,a) =0

where, as above, we interpret a € RP to be a vector of parameters
that indexes the function f(-,a).

For a given a, we are interested in the set of solutions

AUAN={z € X : f(z,a) = 0}

and the way that this correspondence depends on a.

If f is separable in a, that is, f(x,a) = g(x) + a, then we can use
Sard’s Theorem (PS6 2010).
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Transversality T heorem

Separability is strong, and not required: If f depends on a in
a nonseparable fashion, it is enough that from any solution
f(x,a) = 0, any directional change in f can be achieved by arbi-
trarily small changes in x and a.

Theorem 4 (Thm. 2.5', Transversality Theorem). Let X C R"
and A C RP be open, and f : X x A — R™ be C" with r >
14+ max{0,n—m}. Suppose that O is a regular value of f. Then
there is a set Ag C A such that A\ Ag has Lebesgue measure
zero and for all a € Ag, 0 is a regular value of fo, = f(-,a).
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Remark: Notice the important difference between the statement
that O is a regular value of f (one of the assumptions of the
Transversality Theorem), and the statement that 0 is a regular
value of f, for a fixed a € Ay (part of the conclusion of the
Transversality Theorem). 0 is a regular value of f if and only
if Df(x,a) has full rank for every (x,a) such that f(x,a) = O.
Instead, for fixed ag € Ag, O is a regular value of fqqy = f(-,ap) if
and only if Dy f(x,ag) has full rank for every z such that fu,(x) =

f(z,a0) = 0.
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Remark: Consider the important special case in whichm
so we have as many equations (m) as endogenous variables (n).
In this case, suppose f is C'1 (note that 1 =1 4+ max{0,n — n}).
If O is a regular value of f, that is, Df(x,a) has rank n = m
for every (x,a) such that f(x,a) = 0, then by the Transversality
Theorem there is a set Ag C A such that A\ Ag has Lebesgue
measure zero and for every ag € Ag, Dzf(x,ag) has rank n = m
for all x such that f(x,ag) = 0.

Fix ag € Apg and zg such that f(xg,ag) = 0. By the Implicit
Function Theorem, there exist open sets A* containing ag and
X* containing zg, and a C! function z : A* — X* such that

e x(apg) = xg
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e f(x(a),a) =0 for every a € A*

o if (x,a) € X* x A* then

f(x,a) =0 <— z = x(a)

that is, xg is locally unique, and z(a) is locally unique for
each a € A*

e Dx(ag) = —[Daf(x0,a0)] L Daf(zg,a0)



Fixed Points for Functions

Definition 1. Let X be a nonempty set and f : X — X. A point
x* € X is a fixed point of f if f(x*) = z*.

x* is a fixed point of f if it is “fixed” by the map f.
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Fixed Points for Functions

Examples:

1. Let X =R and f: R — R be given by f(xz) = 2x. Then
x = 0 is a fixed point of f (and is the unique fixed point of

f) S(D= Ax=x & ~=0

2. Let X =R and f: R — R be given by f(x) = x. Then every
point in R is a fixed point of f (in particular, fixed points
need not be unique).

3. Let X=Rand f: R —- R begiven by f(x) =x4+ 1. Then f

has no fixed points.
jr(x\‘lx*\%‘“x N e e U 4



4. Let X =[0,2] and f: X — X be given by f(z) = 3(z + 1).
Then

1
f@) = Set+=s
<— x4+ 1=2x
<— =1

So x = 1 is the unique fixed point of f. Notice that f is a
contraction (why?), so we already knew that f must have
a unique fixed point on R from the Contraction Mapping
Theorem.

5. Let X =[0,2]U[3,1] and f: X — X be given by f(z) =1—=.
Then f has no fixed points.
() = (- % = %= & =7
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6. Let X = [-2,2] and f : X — X be given by f(z) = 3z°.
Then f has two fixed points, £ = 0 and x = 2. If instead
X' = (0,2), then f: X' — X’ but f has no fixed points on
X'

7. Let X ={1,2,3}and f: X — X begiven by f(1) =2, f(2) =
3,f(3) =1 (so f is a permutation of X). Then f has no
fixed points.

8. Let X =1[0,2] and f: X — X be given by

_Jz+1 ifz<L1
f(x)_{ac—l ifxz>1

Then f has no fixed points.



A Simple Fixed Point Theorem

Theorem 1. Let X = [a,b] fora,be R witha <bandlet f: X —
X be continuous. Then f has a fixed point.

Proof. Let g : [a,b] — R be given by

e oo S\-:%EC\(
g(z) = f(z) — = aexy=0 & X T & g
If either f(a) = a or f(b) = b, we're done. So assume f(a) > a
and f(b) <b. Then (flane (23

(§Ce Laded)
gla) = f(a)—a>0

g(b) = f(b)—-b<0
g is continuous, so by the Intermediate Value Theorem, dx* €
(a,b) such that g(z*) = 0, that is, such that f(z*) = z*. [ ]
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g(x) = f(x) - x
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Brouwer’s Fixed Point Theorem

Theorem 2 (Thm. 3.2. Brouwer’'s Fixed Point Theorem). Let

X C R™ be nonempty, compact, and convex, and let f : X — X
be continuous. Then f has a fixed point.
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Sketch of Proof of Brouwer

o Lo o'
Consider the case when the set X is theﬂmit ball in R", i.e.
X =Bi[0] =B ={z e R": |z|| <1}. Let f: B — B be a
continuous function. Recall that 0B denotes the boundary of B,
so 0B={z e R":|z| =1}.

SNk \ C!m/\.‘g -
ch @si*:

—
Fact: Let B be the unit ball in R™. Then there is no continuous

function h : B — 0B such that h(z’) = 2’ for every 2’ € 0B.

See J. Franklin, Methods of Mathematical Economics, for an

elementary (but long) proof.
ok~ dLN)
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Now to establish Brouwer’s theorem, suppose, by way of contra-
diction, that f has no fixed points in B. Thus for every = € B,

z 7 f(z).

Since © #= f(x) for every z, we can carry out the following con-
struction. For each x € B, construct the line segment originating
at f(x) and going through x. Let g(x) denote the intersection
of this line segment with 0B.

T his construction is well-defined, and gives a continuous function
g . B — 0B. Furthermore, if 2’ € 0B, then 2’ = g(2’). That is,
glgp = idgp. Since there are no such functions by the fact
above, we have a contradiction. Therefore there exists z* € B
such that f(«*) = z*, that is, f has a fixed point in B.

11
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Fixed Points for Correspondences

Definition 2. Let X be nonempty and ¥ : X — 2% be a corre-
spondence. A point z* € X is a fixed point of W if x* € W(z*).

Note here that we do not require W(x*) = {«*}, that is W need
not be single-valued at z*. So z* can be a fixed point of W but
there may be other elements of W(x*) different from z*.
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Examples:

1. Let X =[0,4] and W : X — 2% be given by

z4+1,042] ife<?
W(z) = [0, 4] if ¢ =2
[t — 2,2 —1] ifz>2

Then x = 2 is the unique fixed point of W.

ae Yl = Lo\ 7-¢ (_‘3(,_{.\)%4—-\3
xe& (x—=2a,>x~)]
> £ P oo

2. Let X =[0,4] and V¥ : X — 2% be given by =

[z4+1,z42] ifz<?
W(x)=1¢ [0,1]U[3,4] ifx=2
[t — 2,2 —1] ifz>2

Then W has no fixed points.
s ke = bep) v L)

15



16



2 4

5d ¥GH= Lo\ 0 L30)

' S o~ oSl
Mb,\z_\ /w\_g o \093‘(\:\

17



A

A
ALiv) G reneeply, Qewpack | convey St

N7 3 X
Kakutani's Fixed Point Theorem

Theorem 3. (Thm. 3.4’. Kakutani’s Fixed Point Theorem)
Let X C R" be a&gfon—empty, compact, convex set and WV :
X — 2% pe an L/Lé,éfer hemi-continuous correspondence with non-
empty, convex, compact values. Then W has a fixed point in
X.

Proof. (sketch) Here, the idea is to use Brouwer's theorem after
appropriately approximating the correspondence with a function.
The-catehisthat there wontrrecessarily exista continuous se-
lection from W, that is, a continuous function f : X — X such
that f(x) € W(x) for every x € X. If such a function existed, then
by applying Brouwer to f we would have a fixed point of W (be-
cause if dz* € X such that z* = f(z*), then z* = f(z*) € W(z*)).
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Instead, we look for a weaker type of approximation. Let X C R"
be a non-empty, compact, convex set, and let Vv : X — 2X be
an uhc correspondence with non-empty, compact, convex values.
For every € > 0O, define the ¢ ball about graph W to be

B:( graph W) =
{z € X x X :d(z, graph W) = inf d(z,(z,y)) < 5}
(z,y)e graph w
Here d denotes the ordinary Euclidean distance. Since W is a

convex-valued correspondence, for every € > 0 there exists a con-
tinuous function f- : X — X such that graph f: C B:( graph V).



B, (graph W)
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Now by letting € — 0O, this/mMeans that we can find a sequence of
continuous functions {fn} such that graph f, C Bi( graph W)
for each n. By Brouwer’'s Fixed Point Theorem, ee?ch function

fn has a fixed point x, € X, and
(Zn,Zn) = (Zn, fn(Zn)) € graph fp C Bi( graph W) for each n

So for each n there exists (zn,yn) € graph W such that &(/%.%) ,me’r@
L
1 v,

1
n n

Since X is compact, {Zp} has a convergent subsequence {Zn, },
with zp,, — z € X. Then zn, — = and yp, — x. Since W is
uhc and closed-valued, it has closed graph, so (z,zZ) € graph W.
Thus £ € W(z), that is, z is a fixed point of W. [ ]



Separating Hyperplane Theorems

Theorem 4 (1.26, Separating Hyperplane Theorem). Let A, B C
R"™ be nonempty, disjoint convex sets. Then there exists a
nonzero vector p € R™ such that

p-a<p-b YVae A,be B
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Separating a Point from a Set

Theorem 5. Let Y C R" be a nonempty convex set and x € Y.
Then there exists a nonzero vector p € R™ such that

p-x<p-y Vyey

Proof. We sketch the proof in the special case that Y is compact.
We will see that in this case we actually get a stronger conclusion:

peR" p#EAO0st. pa<p-y VyeY

Choose yg € Y such that |[yg — z|| = inf{|y — x| : y € Y}; such
a point exists because Y is compact, so the distance function
g(y) =y — z|| assumes its minimum on Y. Since z ¢ Y, = # yo,

/\U SOyg—x#+#0. Let p=yg—x. The set
9 H={zeR":p-z=p- yp}

N ﬁ\)__g\..’-_c;
Lo~

(TS
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is the hyperplane perpendicular to p through yg. See Figure 12.
Then

P-yo = (Wo—T) Yo

(yo — ) - (yo — = + )

(yo —x) - (yo—x) +(yo — ) -z
= (lyo—zlf+p-=

> p-x

We claim that
yeY =>p-y>2p-yo > ¢ %

If not, suppose there exists y € Y such that p-y <p-yg. Given
ae€ (0,1), let

wa = oy + (1 — a)yo



Since Y is convex, wg € Y. Then for o sufficiently close to zero,

|z —wal? = |z —ay— (1 —a)yol? el &
2
z —yo + alyo — y)| aNgeteve
2
= |—p+alyo —y)| sl & €
2 2 oJ o N C_

= |p]*>—20ap- (yo —y) + o?yg —y|® o S

2 2
= |p +a<—2p-(yo—y)+oz|yo—y|) .

2  erak U —
< |p for o clos€ to 0, asp-yg>p-y — Oas <20

lyo — =

Thus for o sufficiently close to zero,

[wa — ]| <llyo — =]

which implies yg is not the closest point in Y to x, contradiction.
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The general version of the Separating Hyperplane Theorem can
be derived from this special case by noting that if An B = 0,
then0Z€A—-—B={a—b:ac Abc B}.
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Strict Separation

For the special case of Y compact and X = {x}, we actually
could strictly separate Y and X:

A JpeR", p£EOst. p-a<p-y YVyeyY

When can we do this in general? Will require additional assump-
tions...
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Strict Separation

Theorem 6. (Strict Separating Hyperplane Theorem) Let
A, B C R"™ be nonempty, disjoint, closed, convex sets. Then
there exists a nonzero vector p € R"™ such that

p-a<p-b Vae A,be B
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