Econ 204 2020

Lecture 1

Outline

- 1. Introductions
- 2. About the Course and Other Administrative Details
- 3. Methods of Proof
- 4. Equivalence Relations
- 5. Cardinality

Announcements

· read alf 1.1-1.6

· PSI posted - due Friday

at I pm (Berkeley time)

Introductions

Welcome

- 204
- Berkeley Economics
- UC Berkeley
- Berkeley
- California

• US...

Introductions

- Chris Shannon
- Farzad Pourbabaee
- Damian Vergara

About the Course

Schedule: Lectures MTWThF 9:00 - 11:30 am (Berkeley time), often going over so don't schedule anything before
 12:00 videos posted bcourses folder "lecture videos"

Discussion Sections: MTWThF 1:00 - 3:00 pm (first section today) videos posted bCourses folder "section videos"

Office hours: Chris Shannon MTWThF 11:30 - 12:30 (end of lecture + 1 hour), also by appointment

Farzad + Dami MTWThF 3:00 - 5:00

• Final Exam: Wednesday August 19

open book + notes, 24 hour

- Prerequisites: Math 53-54 at Berkeley or equivalent
 - 4 semesters college mathematics
 - linear algebra
 - multivariable calculus
 - rigorous approach theorems stated carefully and some proofs given
 - stream for engineers and scientists

Course requirements:

• problems sets: 6 total

(no late problem sets...no exceptions)

- exam
- reading/working on your own

Grade: 10% problem sets (5 highest scores out of 6), 90% final exam

Grading in First Year Economics Courses:

- median grade = B+ : solid command of material
- A and A- are very good grades, A+ for truly exceptional work
- B : ready to go on to further work...a B in 204 means you are ready to go on to 201a/b, 202a/b, 240a/b
- B-: very marginal, but we won't make you take the class again. B- in 204 means you will have a very hard time in 201a/b. Recommend you take Math 53 and 54 this year, maybe Math 104, come back next year to retake 204 and

take 201a/b. B- is a passing grade, but you must maintain a B average

- C: not passing. Definitely not ready for 201a/b, 202a/b, 240a/b. Take Math 53-54 this year, maybe Math 104, retake 204 next year
- 204 with at least a B- (or a waiver from 204 requirement) is a strictly enforced prerequisite for enrollment in 201a/b
- F: means you didn't take the final exam. Be sure to withdraw if you don't or can't take the final.

This year we strongly recommend all students take 204 S/U (pass/no pass)

Resources:

Book: de la Fuente, *Mathematical Methods and Models for Economists*

Lecture notes: for every lecture + supplements for several topics

Be sure to read Corrections Handout with dIF

Seek out other references

This class is not normal.).

- lectures
- expectations

Goals for 204

- reduce heterogeneity of math backgrounds for students in Econ graduate classes
- advance everyone's math skills and knowledge
- present some particular concepts and results used in first-year economics courses 201a/b, 202a/b, 240a/b
- challenge everyone so not everyone will understand everything

- develop basic math skills and knowledge needed to work as a professional economist and read academic economics
- develop ability to read and evaluate purported proofs...essential for reading and working in all branches of economics - theoretical, empirical, experimental
- develop ability to compose simple proofs...essential to working in all branches of economics - theoretical, empirical, experimental
- cover selected material from real analysis and linear algebra at moderate level of abstraction (considerably more advanced and abstract than Math 53 + 54)

 not to review Math 53 + 54. If you are weak on this material, take Math 53-54 this year, and take 204 next year.

Learning by Doing

- to learn this sort of mathematics you need to do more than just read the book and notes and listen to lectures
- active reading: work through each line, be sure you know how to get from one line to the next
- active listening: follow each step as we work through arguments in class
- working problems: the most valuable part of the class

- working in groups strongly encouraged...
- but, always try to work through all of the problems before talking to others
- everyone must write up his/her own solutions
- best test of understanding: can you explain it to others

Methods of Proof

What is a proof? The million dollar question...

Main Methods of Proof:

- deduction
- contraposition
- induction
- contradiction

We'll examine each of these in turn.

Proof by Deduction

Proof by Deduction: A list of statements, the last of which is the statement to be proven. Each statement in the list is either

- an axiom: a fundamental assumption about mathematics, or part of definition of the object under study; or
- a previously established theorem; or
- follows from previous statements in the list by a valid rule of inference

Proof by Deduction

Example: Prove that the function $f(x) = x^2$ is continuous at x = 5.

Recall from one-variable calculus that $f(x) = x^2$ is continuous at x = 5 means

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ |x - 5| < \delta \Rightarrow |f(x) - f(5)| < \varepsilon$$

That is, "for every $\varepsilon > 0$ there exists a $\delta > 0$ such that whenever x is within δ of 5, f(x) is within ε of f(5)."

To prove the claim, we must systematically verify that this definition is satisfied. *Proof.* Let $\varepsilon > 0$ be given. Let

$$\delta = \min\left\{1, \frac{\varepsilon}{11}\right\} > 0 \quad \Rightarrow \quad \zeta \leq \frac{\varepsilon}{v}$$

Where did that come from ? Suppose $|x-5| < \delta$. Since $\delta \le 1$, 4 < x < 6, so 9 < x + 5 < 11 and |x+5| < 11. Then

$$\frac{|f(x) - f(5)|}{||x| + 5|} = |x^2 - 25|$$

$$= |(x + 5)(x - 5)|$$

$$= |x + 5||x - 5|$$

$$\leq 11 \cdot \delta$$

$$\leq 11 \cdot \frac{\varepsilon}{11}$$

$$= \varepsilon$$

Thus, we have shown that for every $\varepsilon > 0$, there exists $\delta > 0$ such that $|x - 5| < \delta \Rightarrow |f(x) - f(5)| < \varepsilon$, so f is continuous at x = 5.

P.Q.S statements

Proof by Contraposition

```
Recall some basics of logic.
 " not P"
      \neg P means "P is false."
           "and"
      P \wedge Q means "P is true and Q is true."
        " 05 "
      P \lor Q means "P is true or Q is true (or possibly both)."
      \neg P \land Q means (\neg P) \land Q; \neg P \lor Q means (\neg P) \lor Q.
"implies"
      P \Rightarrow Q means "whenever P is satisfied, Q is also satisfied."
      Formally, P \Rightarrow Q is equivalent to \neg P \lor Q.
```

$\neg (P \land Q) = (\neg P) \checkmark (\neg Q)$ Proof by Contraposition

The *contrapositive* of the statement $P \Rightarrow Q$ is the statement $\neg Q \Rightarrow \neg P$.

Theorem 1. $P \Rightarrow Q$ is true if and only if $\neg Q \Rightarrow \neg P$ is true.

- Proof. Suppose $P \Rightarrow Q$ is true. Then either P is false, or Q is true (or possibly both). Therefore, either $\neg P$ is true, or $\neg Q$ is false (or possibly both), so $\neg(\neg Q) \lor (\neg P)$ is true, that is, $\neg Q \Rightarrow \neg P$ is true.
- Conversely, suppose $\neg Q \Rightarrow \neg P$ is true. Then either $\neg Q$ is false, or $\neg P$ is true (or possibly both), so either Q is true, or P is false (or possibly both), so $\neg P \lor Q$ is true, so $P \Rightarrow Q$ is true.

We illustrate with an example:

Theorem 2. For every $n \in \mathbb{N}_0 = \{0, 1, 2, 3, ...\}$, $\mathbb{N} \to \mathbb{N}_0 \subset \mathbb{N}_0$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

i.e. $1 + 2 + \dots + n = \frac{n(n+1)}{2}$.

Proof. Base step n = 0: LHS $= \sum_{k=1}^{0} k =$ the empty sum = 0. RHS $= \frac{0 \cdot 1}{2} = 0$

So the claim is true for n = 0.

No =

Induction step: Suppose

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \text{ for some } n \ge 0$$

We must show that

$$\sum_{k=1}^{n+1} k = \frac{(n+1)((n+1)+1)}{2}$$

LHS =
$$\sum_{k=1}^{n+1} k$$

= $\sum_{k=1}^{n} k + (n+1)$
= $\frac{n(n+1)}{2} + (n+1)$ by the Induction hypothesis
= $(n+1)\left(\frac{n}{2}+1\right)$
= $\frac{(n+1)(n+2)}{2}$
RHS = $\frac{(n+1)((n+1)+1)}{2}$
= $\frac{(n+1)(n+2)}{2} = LHS$

So by mathematical induction, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ for all $n \in \mathbb{N}_0$.

Proof by Contradiction

Assume the negation of what is claimed, and work toward a contradiction.

Theorem 3. There is no rational number q such that $q^2 = 2$. *Proof.* Suppose $q^2 = 2$ where $q \in Q$. Then we can write $q = \frac{m}{n}$ for some integers $m, n \in \mathbb{Z}$. Moreover, we can assume that m and n have no common factor; if they did, we could divide it out.

$$2 = q^2 = \frac{m^2}{n^2}$$

Therefore, $m^2 = 2n^2$, so m^2 is even.

We claim that m is even. If not, then m is odd, so m = 2p + 1 for some $p \in \mathbb{Z}$. Then

$$m^{2} = (2p+1)^{2}$$

= $4p^{2} + 4p + 1$
= $2(2p^{2} + 2p) + 1$

which is odd, contradiction. Therefore, m is even, so m = 2r for some $r \in \mathbb{Z}$.

$$m^{2} = 4r^{2} = (2r)^{2}$$
$$= m^{2}$$
$$= 2n^{2}$$
$$n^{2} = 2r^{2}$$

So n^2 is even, which implies (by the argument given above) that n is even. Therefore, n = 2s for some $s \in \mathbb{Z}$, so m and n have a

common factor, namely 2, contradiction. Therefore, there is no rational number q such that $q^2 = 2$.

Definition 1. A binary relation R from X to Y is a subset $R \subseteq X \times Y$. We write xRy if $(x, y) \in R$ and "not xRy" if $(x, y) \notin R$. $R \subseteq X \times X$ is a binary relation on X.

Example: Suppose $f : X \to Y$ is a function from X to Y. The binary relation $R \subseteq X \times Y$ defined by

$$xRy \iff f(x) = y$$

is exactly the graph of the function f. A function can be considered a binary relation R from X to Y such that for each $x \in X$ there exists exactly one $y \in Y$ such that $(x, y) \in R$.

Example: Suppose $X = \{1, 2, 3\}$ and R is the binary relation on X given by $R = \{(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)\}$. This is the binary relation "is weakly greater than," or \geq .

$$\begin{array}{c}3\\2\\1\\1\\1\\2\\3\end{array}$$

Definition 2. A binary relation R on X is

(*i*) reflexive if $\forall x \in X, xRx$

(ii) symmetric if $\forall x, y \in X, xRy \Leftrightarrow yRx$

(iii) transitive if $\forall x, y, z \in X$, $(xRy \land yRz) \Rightarrow xRz$

Definition 3. A binary relation R on X is an equivalence relation if it is reflexive, symmetric and transitive.

Definition 4. Given an equivalence relation R on X, write $\begin{bmatrix} x \\ x \end{bmatrix} = \{y \in X : xRy\}$

[x] is called the equivalence class containing x.

The set of equivalence classes is the quotient of X with respect to R, denoted X/R. " $\times \mod \mathbb{R}$ "

Example: The binary relation \geq on \mathbf{R} is not an equivalence relation because it is not symmetric.

Example: Let $X = \{a, b, c, d\}$ and

$$R \stackrel{\prime\prime}{=} \{(a,a), (a,b), (b,a), (b,b), (c,c), (c,d), (d,c), (d,d)\}$$

 $[a] = \{a, b\}$ $[c] = \{c, d\}$ $[b], [ad] \}$ $[b] = \{a, b\}$ $[d] = \{c, d\}$

(e,c), (c,a)

R= XxX (a, a), (c, al, (a, c), ([a] = ¿a, b, c, d } $X(R = \{2a, b, c, d\}\}$

The equivalence classes of an equivalence relation form a *partition* of X: every element of X belongs to exactly one equivalence class.

Theorem 4. Let R be an equivalence relation on X. Then $\forall x \in X, x \in [x]$. Given $x, y \in X$, either [x] = [y] or $[x] \cap [y] = \emptyset$.

Proof. If $x \in X$, then xRx because R is reflexive, so $x \in [x]$.

Suppose $x, y \in X$. If $[x] \cap [y] = \emptyset$, we're done. So suppose $[x] \cap [y] \neq \emptyset$. We must show that [x] = [y], i.e. that the elements of [x] are exactly the same as the elements of [y].

Choose $z \in [x] \cap [y]$. Then $z \in [x]$, so xRz. By symmetry, zRx. Also $z \in [y]$, so yRz. By symmetry again, zRy. Now choose $w \in [x]$. By definition, xRw. Since zRx and R is transitive, zRw. By symmetry, wRz. Since zRy, wRy by transitivity again. By symmetry, yRw, so $w \in [y]$, which shows that $[x] \subseteq [y]$. Similarly, $[y] \subseteq [x]$, so [x] = [y].

Definition 5. Two sets A, B are numerically equivalent (or have the same cardinality) if there is a bijection $f : A \to B$, that is, a function $f : A \to B$ that is 1-1 ($a \neq a' \Rightarrow f(a) \neq f(a')$), and onto $(\forall b \in B \exists a \in A \text{ s.t. } f(a) = b)$.

Example: $A = \{2, 4, 6, \dots, 50\}$ is numerically equivalent to the set $\{1, 2, \dots, 25\}$ under the function f(n) = 2n.

 $B = \{1, 4, 9, 16, 25, 36, 49 \dots\} = \{n^2 : n \in \mathbb{N}\}$ is numerically equivalent to \mathbb{N} .

A set is either finite or infinite. A set is *finite* if it is numerically equivalent to $\{1, \ldots, n\}$ for some n. A set that is not finite is *infinite*.

In particular, $A = \{2, 4, 6, \dots, 50\}$ is finite, $B = \{1, 4, 9, 16, 25, 36, 49 \dots\}$ is infinite.

A set is *countable* if it is numerically equivalent to the set of natural numbers $N = \{1, 2, 3, ...\}$. An infinite set that is not countable is called *uncountable*.

Example: The set of integers \mathbf{Z} is countable.

$$\mathbf{Z} = \{0, 1, -1, 2, -2, \ldots\}$$

Define $f: \mathbf{N} \to \mathbf{Z}$ by

$$f(1) = 0$$

$$f(2) = 1$$

$$f(3) = -1$$

$$\vdots$$

$$f(n) = (-1)^n \left\lfloor \frac{n}{2} \right\rfloor$$

where $\lfloor x \rfloor$ is the greatest integer less than or equal to x. It is straightforward to verify that f is one-to-one and onto.

(1) $n \pm m =$) $f(n) \pm f(m)$ (2) 4 = E I = 3 n s + f(n) = = = 25

Theorem 5. The set of rational numbers \mathbf{Q} is countable.

"Picture Proof":

$$\mathbf{Q} = \left\{ \frac{m}{n} : m, n \in \mathbf{Z}, n \neq \mathbf{0} \right\}$$
$$= \left\{ \frac{m}{n} : m \in \mathbf{Z}, n \in \mathbf{N} \right\}$$

Go back and forth on upward-sloping diagonals, omitting the

repeats:

$$f(1) = 0$$

$$f(2) = 1$$

$$f(3) = \frac{1}{2}$$

$$f(4) = -1$$

:

 $f: \mathbf{N} \to \mathbf{Q}$, f is one-to-one and onto.