Econ 204 2020

Lecture 2

Outline

1. Cardinality (cont.)
2. Algebraic Structures: Fields and Vector Spaces
3. Axioms for \mathbb{R}
4. Sup, Inf, and the Supremum Property
5. Intermediate Value Theorem

Announcements
- PS 1 due Friday @ 1:00 pm in bCourses
- marked slides posted on class website after lectures
Cardinality

Theorem 5. The set of rational numbers \mathbb{Q} is countable.

“Picture Proof”:

\[
\mathbb{Q} = \left\{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \right\} = \left\{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \right\}
\]
Go back and forth on upward-sloping diagonals, omitting the
repeats:

\[f(1) = 0 \]
\[f(2) = 1 \]
\[f(3) = \frac{1}{2} \]
\[f(4) = -1 \]
\[\vdots \]

\[f : \mathbb{N} \rightarrow \mathbb{Q}, \] \(f \) is one-to-one and onto.
Cardinality (cont.)

Notation: Given a set A, 2^A is the set of all subsets of A. This is the “power set” of A, also denoted $P(A)$.

Important example of an uncountable set:

Theorem 1 (Cantor). $2^\mathbb{N}$, the set of all subsets of \mathbb{N}, is not countable.

Proof. Suppose $2^\mathbb{N}$ is countable. Then there is a bijection $f : \mathbb{N} \rightarrow 2^\mathbb{N}$. Let $A_m = f(m)$. We create an infinite matrix, whose
The $(m, n)^{th}$ entry is 1 if $n \in A_m$, 0 otherwise:

<table>
<thead>
<tr>
<th></th>
<th>\mathbb{N}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A_1</td>
<td>\emptyset</td>
</tr>
<tr>
<td>A_2</td>
<td>${1}$</td>
</tr>
<tr>
<td>A_3</td>
<td>${1, 2, 3}$</td>
</tr>
<tr>
<td>A_4</td>
<td>\mathbb{N}</td>
</tr>
<tr>
<td>A_5</td>
<td>$2\mathbb{N}$</td>
</tr>
</tbody>
</table>

Now, on the main diagonal, change all the 0s to 1s and vice
versa:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>\emptyset</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A_2</td>
<td>${1}$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2^N</td>
<td>$A_3 = {1, 2, 3}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$A_4 = N$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$A_5 = 2N$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Let

$$t_{mn} = \begin{cases}
1 & \text{if } n \in A_m \\
0 & \text{if } n \not\in A_m
\end{cases}$$

Let $A = \{m \in \mathbb{N} : t_{mm} = 0\}$.

$$m \in A \iff t_{mm} = 0 \iff m \not\in A_m$$

$$1 \in A \iff 1 \not\in A_1 \text{ so } A \neq A_1$$

$$2 \in A \iff 2 \not\in A_2 \text{ so } A \neq A_2$$

$$\vdots$$

$$m \in A \iff m \not\in A_m \text{ so } A \neq A_m \quad \forall m \in \mathbb{N}$$

Therefore, $A \neq f(m)$ for any m, so f is not onto, contradiction. \qed
Some Additional Facts About Cardinality

Recall we let $|A|$ denote the cardinality of a set A.

- if A is numerically equivalent to $\{1,\ldots,n\}$ for some $n \in \mathbb{N}$, then $|A| = n$.

- A and B are numerically equivalent if and only if $|A| = |B|$

- if $|A| = n$ and A is a proper subset of B (that is, $A \subseteq B$ and $A \neq B$) then $|A| < |B|$
• if A is countable and B is uncountable, then
 \[n < |A| < |B| \quad \forall n \in \mathbb{N} \]

• if $A \subseteq B$ then $|A| \leq |B|$

• if $r : A \rightarrow B$ is 1-1, then $|A| \leq |B|$

• if B is countable and $A \subseteq B$, then A is at most countable, that is, A is either empty, finite, or countable

• if $r : A \rightarrow B$ is 1-1 and B is countable, then A is at most countable
Algebraic Structures: Fields

Definition 1. A field \(F = (F, +, \cdot) \) is a 3-tuple consisting of a set \(F \) and two binary operations \(+, \cdot : F \times F \to F \) such that

1. **Associativity of \(+ \):**
 \[
 \forall \alpha, \beta, \gamma \in F, \ (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)
 \]

2. **Commutativity of \(+ \):**
 \[
 \forall \alpha, \beta \in F, \ \alpha + \beta = \beta + \alpha
 \]

3. **Existence of additive identity:**
 \[
 \exists ! 0 \in F \text{ s.t. } \forall \alpha \in F, \ \alpha + 0 = 0 + \alpha = \alpha
 \]
4. **Existence of additive inverse:**

\[\forall \alpha \in F \; \exists! (-\alpha) \in F \; s.t. \; \alpha + (-\alpha) = (-\alpha) + \alpha = 0 \]

Define \(\alpha - \beta = \alpha + (-\beta) \)

5. **Associativity of \(\cdot \):**

\[\forall \alpha, \beta, \gamma \in F, \; (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma) \]

6. **Commutativity of \(\cdot \):**

\[\forall \alpha, \beta \in F, \; \alpha \cdot \beta = \beta \cdot \alpha \]

7. **Existence of multiplicative identity:**

\[\exists! 1 \in F \; s.t. \; 1 \neq 0 \; and \; \forall \alpha \in F, \; \alpha \cdot 1 = 1 \cdot \alpha = \alpha \]
8. **Existence of multiplicative inverse:**

\[\forall \alpha \in F \text{ s.t. } \alpha \neq 0 \quad \exists! \alpha^{-1} \in F \text{ s.t. } \alpha \cdot \alpha^{-1} = \alpha^{-1} \cdot \alpha = 1 \]

Define \(\frac{\alpha}{\beta} = \alpha \beta^{-1} \). \(\beta \neq 0 \)

9. **Distributivity of multiplication over addition:**

\[\forall \alpha, \beta, \gamma \in F, \quad \alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma \]
Fields

Examples:

- \mathbb{R}: standard $+\cdot$.

- \mathbb{C}: complex numbers, (x, y).

- $\mathbb{C} = \{x + iy : x, y \in \mathbb{R}\}$. $i^2 = -1$, so

$$(x + iy)(w + iz) = xw + ixz + iwy + i^2yz = (xw - yz) + i(xz + wy)$$

- $\mathbb{Q} \subset \mathbb{R}$, $\mathbb{Q} \neq \mathbb{R}$. \mathbb{Q} is closed under $+\cdot$, taking additive and multiplicative inverses; the field axioms are inherited from the field axioms on \mathbb{R}, so \mathbb{Q} is a field.
• \mathbb{N} is not a field: no additive identity.

• \mathbb{Z} is not a field; no multiplicative inverse for 2.

• $\mathbb{Q}(\sqrt{2})$, the smallest field containing $\mathbb{Q} \cup \{\sqrt{2}\}$. Take \mathbb{Q}, add $\sqrt{2}$, and close up under $+,-,\cdot$, taking additive and multiplicative inverses. One can show

$$Q(\sqrt{2}) = \{q + r\sqrt{2} : q, r \in \mathbb{Q}\}$$

For example,

$$(q + r\sqrt{2})^{-1} = \frac{q}{q^2 - 2r^2} - \frac{r}{q^2 - 2r^2}\sqrt{2}$$
• A finite field: $F_2 = (\{0, 1\}, +, \cdot)$ where we define

\[
\begin{array}{ccc}
0 + 0 &=& 0 \\
0 + 1 &=& 1 + 0 = 1 \\
1 + 1 &=& 0 \\
0 \cdot 0 &=& 0 \\
0 \cdot 1 &=& 1 \cdot 0 = 0 \\
1 \cdot 1 &=& 1
\end{array}
\]

(“Arithmetic mod 2”) $\Rightarrow 1 = -1$
Vector Spaces

Definition 2. A vector space is a 4-tuple \((V, F, +, \cdot)\) where \(V\) is a set of elements, called vectors, \(F\) is a field, \(+\) is a binary operation on \(V\) called vector addition, and \(\cdot : F \times V \rightarrow V\) is called scalar multiplication, satisfying

1. **Associativity of \(+\):**

 \[
 \forall x, y, z \in V, \quad (x + y) + z = x + (y + z)
 \]

2. **Commutativity of \(+\):**

 \[
 \forall x, y \in V, \quad x + y = y + x
 \]
3. Existence of vector additive identity:
\[\exists! 0 \in V \text{ s.t. } \forall x \in V, \ x + 0 = 0 + x = x \]

4. Existence of vector additive inverse:
\[\forall x \in V \ \exists! (-x) \in V \text{ s.t. } x + (-x) = (-x) + x = 0 \]
Define \(x - y \) to be \(x + (-y) \).

5. Distributivity of scalar multiplication over vector addition:
\[\forall \alpha \in F, x, y \in V, \ \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y \]

6. Distributivity of scalar multiplication over scalar addition:
\[\forall \alpha, \beta \in F, x \in V \ (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x \]
7. Associativity of \(\cdot \):
\[
\forall \alpha, \beta \in F, x \in V \quad (\alpha \circ \beta) \cdot x = \alpha \cdot (\beta \cdot x)
\]

8. Multiplicative identity:
\[
\forall x \in V \quad 1 \cdot x = x
\]
(Note that 1 is the multiplicative identity in \(F \); 1 \(\notin \) \(V \))

"\(V \) is a vector space over \(F \)"

or "\(V \) over \(F \)"
\[S = \mathbb{R} \]

\[\forall \theta \exists x \in \mathbb{R} \]

\[\Lambda = \{ (\theta, x) : x \in \mathbb{N} \} \]

\[A_n = (\theta, x) \quad \forall x \in \mathbb{N} \]

\[A_n \in \Lambda \quad \forall \theta \]

\[A_1 \subseteq A_2 \subseteq \cdots \]

\[\bigcup \limits_{n=1}^{\infty} A_n = (-\infty, \infty) \neq \Lambda \]
\(f : (0, \infty) \rightarrow \mathbb{R} \)

\(f : (0, 1] \rightarrow [1, \infty) \quad \frac{1}{x} = f(x) \)

\(g : (1, \infty) \rightarrow (-\infty, 1) \quad g(x) = 2 - x \)

\[A = A_1 \cup A_2 \quad \text{where} \quad 1 \in A_2 \]

\[A_1 \cap A_2 = \emptyset \]

\[f(x) = x \quad \forall x \in A_2 \]

\[A = [0, 1] \]

\[A_1 = \{ x_n : n \in \mathbb{N} \} \]
Vector Spaces

Examples:

1. \mathbb{R}^n over \mathbb{R}.

2. \mathbb{R} is a vector space over \mathbb{Q}:

 (scalar multiplication) $q \cdot r = qr$ (product in \mathbb{R})

 \mathbb{R} is not finite-dimensional over \mathbb{Q}, i.e. \mathbb{R} is not \mathbb{Q}^n for any $n \in \mathbb{N}$.

3. \mathbb{R} is a vector space over \mathbb{R}.
4. \(\mathbb{Q}(\sqrt{2}) \) is a vector space over \(\mathbb{Q} \). As a vector space, it is \(\mathbb{Q}^2 \); as a field, you need to take the funny field multiplication.

\[\text{i.e. } (q, r) \text{ versus } q + r \sqrt{2} \]

5. \(\mathbb{Q}(\sqrt[3]{2}) \), as a vector space over \(\mathbb{Q} \), is \(\mathbb{Q}^3 \).

\[(q, r, s) \quad q + r \sqrt[3]{2} + s (\sqrt[3]{2})^2 \]

6. \((F_2)^n\) is a finite vector space over \(F_2 \).

\[f : [0, 1] \to \mathbb{R} \text{ continuous} \]

7. \(\mathcal{C}([0, 1]) \), the space of all continuous real-valued functions on \([0, 1]\), is a vector space over \(\mathbb{R} \).

- vector addition: \(f, g \in \mathcal{C}([0, 1]) \)

\[(f + g)(t) = f(t) + g(t) \quad \forall t \in [0, 1] \]
Note we define the function \(f + g \) by specifying what value it takes for each \(t \in [0, 1] \).

- **scalar multiplication:** \(\alpha \in \mathbb{R}, \ f \in C([0,1]) \)
 \[
 (\alpha f)(t) = \alpha(f(t)) \quad \forall t \in [0,1]
 \]

- **vector additive identity:** 0 is the function which is identically zero: \(0(t) = 0 \) for all \(t \in [0,1] \).

- **vector additive inverse:**
 \[
 (-f)(t) = -(f(t)) \quad \forall t \in [0,1]
 \]
Axioms for \mathbb{R}

1. \mathbb{R} is a field with the usual operations $+,$ $\cdot,$ additive identity 0, and multiplicative identity 1.

2. **Order Axiom:** There is a complete ordering $\leq,$ i.e. \leq is reflexive, transitive, antisymmetric ($\alpha \leq \beta, \beta \leq \alpha \Rightarrow \alpha = \beta$) with the property that

$$\forall \alpha, \beta \in \mathbb{R} \text{ either } \alpha \leq \beta \text{ or } \beta \leq \alpha$$

The order is compatible with $+$ and $\cdot,$ i.e.

$$\forall \alpha, \beta, \gamma \in \mathbb{R} \begin{cases} \alpha \leq \beta & \Rightarrow \alpha + \gamma \leq \beta + \gamma \\ \alpha \leq \beta, 0 \leq \gamma & \Rightarrow \alpha \gamma \leq \beta \gamma \end{cases}$$

$\alpha \geq \beta$ means $\beta \leq \alpha.$ $\alpha < \beta$ means $\alpha \leq \beta$ and $\alpha \neq \beta.$
Completeness Axiom

3. **Completeness Axiom**: Suppose $L, H \subseteq \mathbb{R}$, $L \neq \emptyset
eq H$ satisfy

$$\ell \leq h \ \forall \ell \in L, h \in H$$

Then

$$\exists \alpha \in \mathbb{R} \text{ s.t. } \ell \leq \alpha \leq h \ \forall \ell \in L, h \in H$$

The Completeness Axiom differentiates \mathbb{R} from \mathbb{Q}: \mathbb{Q} satisfies all the axioms for \mathbb{R} except the Completeness Axiom.
$L, \mathbb{R} \subseteq L \cup \emptyset, \# \neq \emptyset$

$L = \{ x \in \mathbb{R} : 0 < x^2 < 2 \}$

$H = \{ x \in \mathbb{R} : 2 < x^2 < 16 \}$

$\sup L < \inf H$ (in \mathbb{R})

$L \subseteq H \subseteq \mathbb{R}$, $\forall x \in \mathbb{R}$

$\exists x \in \mathbb{R}$ s.t. $L \subseteq x \subseteq H$ for $\forall x \in \mathbb{R}$
Sups, Infs, and the Supremum Property

Definition 3. Suppose \(X \subseteq \mathbb{R} \). We say \(u \in \mathbb{R} \) is an upper bound for \(X \) if

\[
x \leq u \ \forall x \in X
\]

and \(\ell \in \mathbb{R} \) is a lower bound for \(X \) if

\[
\ell \leq x \ \forall x \in X
\]

\(X \) is bounded above if there is an upper bound for \(X \), and bounded below if there is a lower bound for \(X \).
Definition 4. Suppose X is bounded above. The **supremum** of X, written $\sup X$, is the least upper bound for X, i.e. $\sup X$ satisfies

$$\sup X \geq x \quad \forall x \in X \quad (\text{sup } X \text{ is an upper bound})$$

$$\forall y < \sup X \ \exists x \in X \ \text{s.t. } x > y \quad (\text{there is no smaller upper bound})$$

Analogously, suppose X is bounded below. The **infimum** of X, written $\inf X$, is the greatest lower bound for X, i.e. $\inf X$ satisfies

$$\inf X \leq x \quad \forall x \in X \quad (\text{inf } X \text{ is a lower bound})$$

$$\forall y > \inf X \ \exists x \in X \ \text{s.t. } x < y \quad (\text{there is no greater lower bound})$$

If X is not bounded above, write $\sup X = \infty$. If X is not bounded below, write $\inf X = -\infty$. Convention: $\sup \emptyset = -\infty$, $\inf \emptyset = +\infty$.
The Supremum Property

The **Supremum Property**: Every nonempty set of real numbers that is bounded above has a supremum, which is a real number. Every nonempty set of real numbers that is bounded below has an infimum, which is a real number.

Note: \(\sup X \) need not be an element of \(X \). For example, \(\sup(0, 1) = 1 \not\in (0, 1) \).
The Supremum Property

Theorem 2 (Theorem 6.8, plus . . .). The Supremum Property and the Completeness Axiom are equivalent.

Proof. Assume the Completeness Axiom. Let $X \subseteq \mathbb{R}$ be a nonempty set that is bounded above. Let U be the set of all upper bounds for X. Since X is bounded above, $U \neq \emptyset$. If $x \in X$ and $u \in U$, $x \leq u$ since u is an upper bound for X. So

$$x \leq u \ \forall x \in X, u \in U$$

By the Completeness Axiom,

$$\exists \alpha \in \mathbb{R} \ s.t. \ x \leq \alpha \leq u \ \forall x \in X, u \in U$$

α is an upper bound for X, and it is less than or equal to every other upper bound for X, so it is the least upper bound for X, so
so $\sup X = \alpha \in \mathbb{R}$. The case in which X is bounded below is similar. Thus, the Supremum Property holds.

Conversely, assume the Supremum Property. Suppose $L, H \subseteq \mathbb{R}$, $L \neq \emptyset \neq H$, and

$$\ell \leq h \ \forall \ell \in L, h \in H$$

Since $L \neq \emptyset$ and L is bounded above (by any element of H), $\alpha = \sup L$ exists and is real. By the definition of supremum, α is an upper bound for L, so

$$\ell \leq \alpha \ \forall \ell \in L$$

Suppose $h \in H$. Then h is an upper bound for L, so by the definition of supremum, $\alpha \leq h$. Therefore, we have shown that

$$\ell \leq \alpha \leq h \ \forall \ell \in L, h \in H$$

so the Completeness Axiom holds. \qed
Archimedean Property

Theorem 3 (Archimedean Property, Theorem 6.10 + ...).

\[\forall x, y \in \mathbb{R}, y > 0 \ \exists n \in \mathbb{N} \text{ s.t. } ny = (y + \cdots + y)^n > x \]

Proof. Exercise. This is a nice exercise in proof by contradiction, using the Supremum Property.

Suppose there exists \(x, y \in \mathbb{R} \) such that \(y > 0 \) but \(ny \leq x \) for all \(n \in \mathbb{N} \).

\[\Rightarrow n \leq \frac{x}{y} \quad \forall n \in \mathbb{N} \]
Intermediate Value Theorem

Theorem 4 (Intermediate Value Theorem). Suppose $f : [a, b] \to \mathbb{R}$ is continuous, and $f(a) < d < f(b)$. Then there exists $c \in (a, b)$ such that $f(c) = d$.

Proof. Later, we will give a slick proof. Here, we give a bare-hands proof using the Supremum Property. Let

$$B = \{x \in [a, b] : f(x) < d\}$$

$a \in B$, so $B \neq \emptyset$; $B \subseteq [a, b]$, so B is bounded above. By the Supremum Property, $\sup B$ exists and is real so let $c = \sup B$. Since $a \in B$, $c \geq a$. $B \subseteq [a, b]$, so $c \leq b$. Therefore, $c \in [a, b]$.
\(f(a) < d < f(b) \)

\[B = \{ x \in [a, b] : f(x) < d \} \]

\[c = \sup B \]

claim: \(f(c) = d \)
We claim that \(f(c) = d \). If not, suppose \(f(c) < d \). Then since \(f(b) > d \), \(c \neq b \), so \(c < b \). Let \(\varepsilon = \frac{d - f(c)}{2} > 0 \). Since \(f \) is continuous at \(c \), there exists \(\delta > 0 \) such that

\[
|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon
\]

\[
\implies f(x) < f(c) + \varepsilon
\]

\[
= f(c) + \frac{d - f(c)}{2}
\]

\[
= \frac{f(c) + d}{2}
\]

\[
< \frac{d + d}{2} = d
\]

so \((c, c + \delta) \subseteq B \), so \(c \neq \sup B \), contradiction.
\[f(c) < d \Rightarrow \exists \delta > 0 \text{ s.t. for } x \in (c-\delta, c+\delta), \quad f(x) < d \]

\[\Rightarrow c \not\in \text{sup B} \]
Suppose $f(c) > d$. Then since $f(a) < d$, $a \neq c$, so $c > a$. Let
\[\varepsilon = \frac{f(c) - d}{2} > 0. \]
Since f is continuous at c, there exists $\delta > 0$ such that
\[
|x - c| < \delta \quad \Rightarrow \quad |f(x) - f(c)| < \varepsilon
\]
\[
\Rightarrow \quad f(x) > f(c) - \varepsilon
\]
\[
= f(c) - \frac{f(c) - d}{2}
\]
\[
= \frac{f(c) + d}{2}
\]
\[
> \frac{d + d}{2}
\]
\[
= d
\]
so $(c - \delta, c + \delta) \cap B = \emptyset$. So either there exists $x \in B$ with $x \geq c + \delta$
(in which case c is not an upper bound for B) or $c - \delta$ is an upper bound for B (in which case c is not the least upper bound for B); in either case, $c \neq \sup B$, contradiction.
\[f(c) > d \Rightarrow \exists \varepsilon > 0 \text{ s.t. } f(x) > d \quad \forall x \in (c-\varepsilon, c+\varepsilon) \]

\[(c-\delta, c+\delta) \cap B = \emptyset \Rightarrow \text{either } \exists y \in [c+\delta, b] \cap B \]
\[\text{or } B \subseteq [a, c-\delta] \]

in either case, \(c \neq \sup B \)
Since $f(c) \not< d$, $f(c) \not> d$, and the order is complete, $f(c) = d$.

Since $f(a) < d$ and $f(b) > d$, $a \neq c \neq b$, so $c \in (a,b)$. \hfill \Box
Corollary 1. There exists $x \in \mathbb{R}$ such that $x^2 = 2$.

Proof. Let $f(x) = x^2$, for $x \in [0, 2]$. f is continuous (Why?). $f(0) = 0 < 2$ and $f(2) = 4 > 2$, so by the Intermediate Value Theorem, there exists $c \in (0, 2)$ such that $f(c) = 2$, i.e. such that $c^2 = 2$. \qed