Econ 204 2020

Lecture 3

Outline

- 1. Metric Spaces and Normed Spaces
- 2. Convergence of Sequences in Metric Spaces
- 3. Sequences in ${\bf R}$ and ${\bf R}^n$

Metric Spaces and Metrics

Generalize distance and length notions in ${f R}^n$

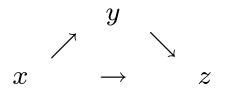
Definition 1. A metric space is a pair (X,d), where X is a set and $d: X \times X \to \mathbf{R}_+$ a function satisfying

1.
$$d(x,y) \ge 0$$
, $d(x,y) = 0 \Leftrightarrow x = y \ \forall x, y \in X$

2.
$$d(x,y) = d(y,x) \ \forall x, y \in X$$

3. triangle inequality:

$$d(x,z) \le d(x,y) + d(y,z) \quad \forall x, y, z \in X$$



A function $d: X \times X \to \mathbb{R}_+$ satisfying 1-3 above is called a metric on X.

A metric gives a notion of distance between elements of X.

Normed Spaces and Norms

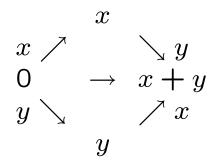
Definition 2. Let V be a vector space over \mathbf{R} . A norm on V is a function $\|\cdot\|: V \to \mathbf{R}_+$ satisfying

1. $||x|| \ge 0 \ \forall x \in V$

2.
$$||x|| = 0 \Leftrightarrow x = 0 \ \forall x \in V$$

3. triangle inequality:

 $||x + y|| \le ||x|| + ||y|| \ \forall x, y \in V$



4.
$$\|\alpha x\| = |\alpha| \|x\| \ \forall \alpha \in \mathbf{R}, x \in V$$

A normed vector space is a vector space over \mathbf{R} equipped with a norm.

A norm gives a notion of length of a vector in V.

Normed Spaces and Norms

Example: In \mathbb{R}^n , standard notion of distance between two vectors x and y measures length of difference x - y, i.e., $d(x,y) = ||x - y|| = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}.$

In an abstract normed vector space, the norm can be used analogously to define a notion of distance.

Theorem 1. Let $(V, \|\cdot\|)$ be a normed vector space. Let $d: V \times V \Rightarrow \mathbf{R}_+$ be defined by

$$d(v,w) = \|v - w\|$$

Then (V, d) is a metric space.

Proof. We must verify that d satisfies all the properties of a metric.

1. Let $v, w \in V$. Then by definition, $d(v, w) = ||v - w|| \ge 0$ (why?), and

$$d(v, w) = 0 \iff ||v - w|| = 0$$

$$\Leftrightarrow v - w = 0$$

$$\Leftrightarrow (v + (-w)) + w = w$$

$$\Leftrightarrow v + ((-w) + w) = w$$

$$\Leftrightarrow v + 0 = w$$

$$\Leftrightarrow v = w$$

2. First, note that for any $x \in V$, $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$, so $0 \cdot x = 0$. Then $0 = 0 \cdot x = (1-1) \cdot x = 1 \cdot x + (-1) \cdot x =$ $x + (-1) \cdot x, \text{ so we have } (-1) \cdot x = (-x). \text{ Then let } v, w \in V.$ $d(v, w) = \|v - w\|$ $= \|-1\|\|v - w\|$ $= \|(-1)(v + (-w))\|$ $= \|(-1)v + (-1)(-w)\|$ $= \|v + (-v)\|$ $= \|w + (-v)\|$ $= \|w - v\|$ = d(w, v)

3. Let
$$u, w, v \in V$$
.

$$d(u, w) = ||u - w|| = ||u + (-v + v) - w|| = ||u - v + v - w|| \leq ||u - v|| + ||v - w|| = d(u, v) + d(v, w)$$

Thus d is a metric on V.

Normed Spaces and Norms

Examples

• E^n : *n*-dimensional Euclidean space.

$$V = \mathbf{R}^n, \ ||x||_2 = |x| = \sqrt{\sum_{i=1}^n (x_i)^2}$$

•
$$V = \mathbf{R}^n$$
, $||x||_1 = \sum_{i=1}^n |x_i|$ (the "taxi cab" norm or L^1 norm)

• $V = \mathbb{R}^n$, $||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\}$ (the maximum norm, or sup norm, or L^{∞} norm)

• $C([0,1]), ||f||_{\infty} = \sup\{|f(t)| : t \in [0,1]\}$

•
$$C([0,1]), ||f||_2 = \sqrt{\int_0^1 (f(t))^2 dt}$$

• $C([0,1]), ||f||_1 = \int_0^1 |f(t)| dt$

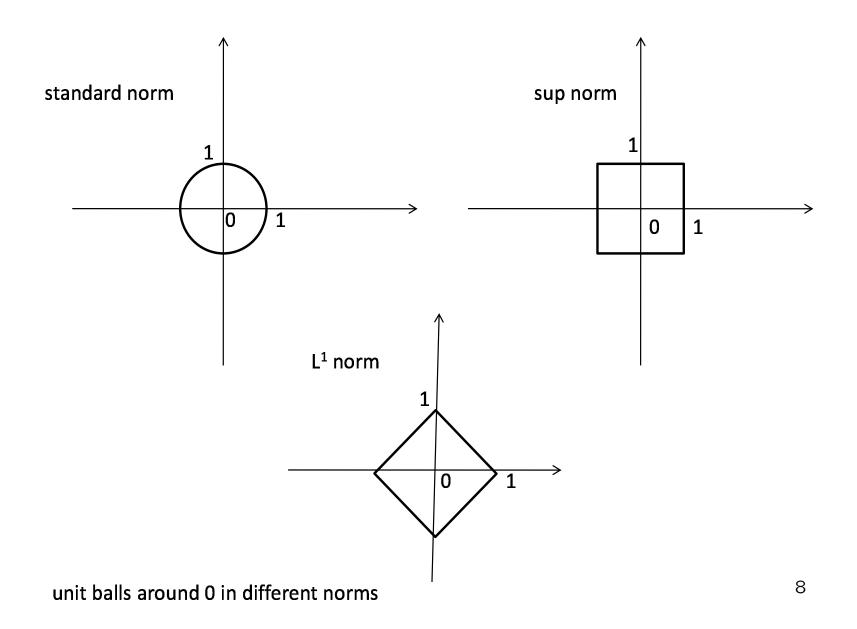
Normed Spaces and Norms

Theorem 2 (Cauchy-Schwarz Inequality). If $v, w \in \mathbf{R}^n$, then

$$\left(\sum_{i=1}^{n} v_i w_i\right)^2 \leq \left(\sum_{i=1}^{n} v_i^2\right) \left(\sum_{i=1}^{n} w_i^2\right)$$
$$|v \cdot w|^2 \leq |v|^2 |w|^2$$
$$|v \cdot w| \leq |v||w|$$

A given vector space may have many different norms: if $\|\cdot\|$ is a norm on a vector space V, so are $2\|\cdot\|$ and $3\|\cdot\|$ and $k\|\cdot\|$ for any k > 0.

Less trivially, \mathbb{R}^n supports many different norms as in the examples above. Different norms on a given vector space yield different geometric properties.



Definition 3. Two norms $\|\cdot\|$ and $\|\cdot\|^*$ on the same vector space V are said to be Lipschitz-equivalent (or equivalent) if $\exists m, M > 0 \text{ s.t. } \forall x \in V$,

 $m\|x\| \le \|x\|^* \le M\|x\|$

Equivalently, $\exists m, M > 0 \text{ s.t. } \forall x \in V, x \neq 0$,

$$m \le \frac{\|x\|^*}{\|x\|} \le M$$

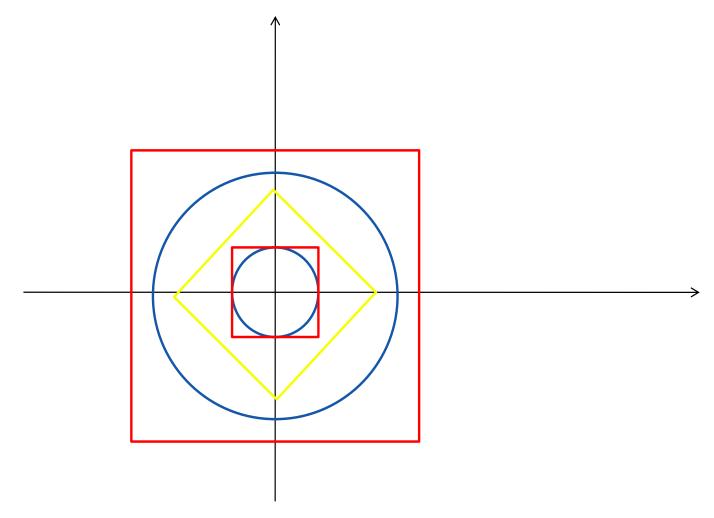
If two norms are equivalent, then they define the same notions of convergence and continuity. For topological purposes, equivalent norms are indistinguishable.

For example, suppose two norms $\|\cdot\|$ and $\|\cdot\|^*$ on the vector space V are equivalent, and fix $x \in V$. Let

$$B_{\varepsilon}(x, \|\cdot\|) = \{y \in V : \|x-y\| < \varepsilon\}$$
$$B_{\varepsilon}(x, \|\cdot\|^*) = \{y \in V : \|x-y\|^* < \varepsilon\}$$

Then for any $\varepsilon > 0$,

$$B_{\frac{\varepsilon}{M}}(x, \|\cdot\|) \subseteq B_{\varepsilon}(x, \|\cdot\|^*) \subseteq B_{\frac{\varepsilon}{m}}(x, \|\cdot\|)$$



norms on **R**ⁿ are equivalent

In \mathbb{R}^n (or any finite-dimensional normed vector space), all norms are equivalent. Roughly, up to a difference in scaling, for topological purposes there is a unique norm in \mathbb{R}^n .

Theorem 3. All norms on \mathbb{R}^n are equivalent.

Infinite-dimensional spaces support norms that are not equivalent. For example, on C([0,1]), let f_n be the function

$$f_n(t) = \begin{cases} 1 - nt & \text{if } t \in \left[0, \frac{1}{n}\right] \\ 0 & \text{if } t \in \left(\frac{1}{n}, 1\right] \end{cases}$$

Then

$$\frac{\|f_n\|_1}{\|f_n\|_{\infty}} = \frac{\frac{1}{2n}}{1} = \frac{1}{2n} \to 0$$

Metrics and Sets

Definition 4. In a metric space (X, d), a subset $S \subseteq X$ is bounded if $\exists x \in X, \beta \in \mathbf{R}$ such that $\forall s \in S, d(s, x) \leq \beta$.

In a metric space (X, d), define

$$B_{\varepsilon}(x) = \{y \in X : d(y, x) < \varepsilon\}$$

= open ball with center x and radius ε
$$B_{\varepsilon}[x] = \{y \in X : d(y, x) \le \varepsilon\}$$

= closed ball with center x and radius ε

Metrics and Sets

We can use the metric d to define a generalization of "radius". In a metric space (X, d), define the *diameter* of a subset $S \subseteq X$ by

diam (S) = sup{
$$d(s, s') : s, s' \in S$$
}

Similarly, we can define the distance from a point to a set, and distance between sets, as follows:

$$d(A, x) = \inf_{a \in A} d(a, x)$$

$$d(A, B) = \inf_{a \in A} d(B, a)$$

$$= \inf\{d(a, b) : a \in A, b \in B\}$$

But d(A, B) is **not** a metric.

Convergence of Sequences

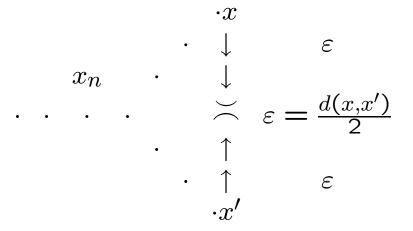
Definition 5. Let (X,d) be a metric space. A sequence $\{x_n\}$ converges to x (written $x_n \to x$ or $\lim_{n\to\infty} x_n = x$) if

 $\forall \varepsilon > 0 \exists N(\varepsilon) \in \mathbf{N} \text{ s.t. } n > N(\varepsilon) \Rightarrow d(x_n, x) < \varepsilon$

Notice that this is exactly the same as the definition of convergence of a sequence of real numbers, except we replace the standard measure of distance $|\cdot|$ in **R** by the general metric d.

Uniqueness of Limits

Theorem 4 (Uniqueness of Limits). In a metric space (X,d), if $x_n \to x$ and $x_n \to x'$, then x = x'.



Proof. Suppose $\{x_n\}$ is a sequence in $X, x_n \to x, x_n \to x', x \neq x'$.

Since $x \neq x'$, d(x, x') > 0. Let

$$\varepsilon = \frac{d(x, x')}{2}$$

Then there exist $N(\varepsilon)$ and $N'(\varepsilon)$ such that

$$n > N(\varepsilon) \Rightarrow d(x_n, x) < \varepsilon$$

 $n > N'(\varepsilon) \Rightarrow d(x_n, x') < \varepsilon$

Choose

$$n > \max\{N(\varepsilon), N'(\varepsilon)\}$$

Then

$$d(x, x') \leq d(x, x_n) + d(x_n, x')$$

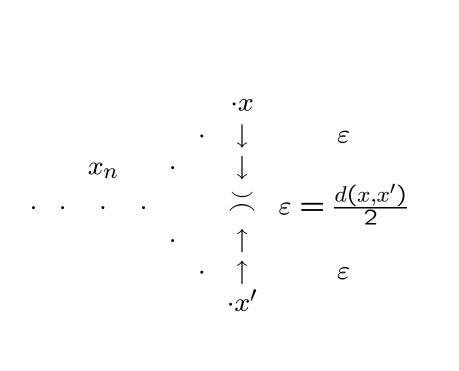
$$< \varepsilon + \varepsilon$$

$$= 2\varepsilon$$

$$= d(x, x')$$

$$d(x, x') < d(x, x')$$

a contradiction.



Cluster Points

Definition 6. An element c is a cluster point of a sequence $\{x_n\}$ in a metric space (X,d) if $\forall \varepsilon > 0$, $\{n : x_n \in B_{\varepsilon}(c)\}$ is an infinite set. Equivalently,

 $\forall \varepsilon > 0, N \in \mathbf{N} \ \exists n > N \ s.t. \ x_n \in B_{\varepsilon}(c)$

Example:

$$x_n = \begin{cases} 1 - \frac{1}{n} & \text{if } n \text{ even} \\ \frac{1}{n} & \text{if } n \text{ odd} \end{cases}$$

For *n* large and odd, x_n is close to zero; for *n* large and even, x_n is close to one. The sequence does not converge; the set of cluster points is $\{0,1\}$.

Subsequences

If $\{x_n\}$ is a sequence and $n_1 < n_2 < n_3 < \cdots$ then $\{x_{n_k}\}$ is called a *subsequence*.

Note that a subsequence is formed by taking some of the elements of the parent sequence, *in the same order*.

Example: $x_n = \frac{1}{n}$, so $\{x_n\} = (1, \frac{1}{2}, \frac{1}{3}, ...)$. If $n_k = 2k$, then $\{x_{n_k}\} = (\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, ...)$.

Cluster Points and Subsequences

Theorem 5 (2.4 in De La Fuente, plus ...). Let (X,d) be a metric space, $c \in X$, and $\{x_n\}$ a sequence in X. Then c is a cluster point of $\{x_n\}$ if and only if there is a subsequence $\{x_{n_k}\}$ such that $\lim_{k\to\infty} x_{n_k} = c$.

Proof. Suppose c is a cluster point of $\{x_n\}$. We inductively construct a subsequence that converges to c. For k = 1, $\{n : x_n \in B_1(c)\}$ is infinite, so nonempty; let

$$n_1 = \min\{n : x_n \in B_1(c)\}$$

Now, suppose we have chosen $n_1 < n_2 < \cdots < n_k$ such that

$$x_{n_j} \in B_{\frac{1}{j}}(c)$$
 for $j = 1, \dots, k$

20

 ${n : x_n \in B_{\frac{1}{k+1}}(c)}$ is infinite, so it contains at least one element bigger than n_k , so let

$$n_{k+1} = \min\left\{n : n > n_k, \ x_n \in B_{\frac{1}{k+1}}(c)\right\}$$

Thus, we have chosen $n_1 < n_2 < \cdots < n_k < n_{k+1}$ such that

$$x_{n_j} \in B_{\frac{1}{j}}(c)$$
 for $j = 1, \ldots, k, k+1$

Thus, by induction, we obtain a subsequence $\{x_{n_k}\}$ such that

$$x_{n_k} \in B_{\frac{1}{k}}(c)$$

Given any $\varepsilon > 0$, by the Archimedean property, there exists $N(\varepsilon) > 1/\varepsilon$.

$$k > N(\varepsilon) \implies x_{n_k} \in B_{\frac{1}{k}}(c)$$

 $\Rightarrow x_{n_k} \in B_{\varepsilon}(c)$

SO

$$x_{n_k}
ightarrow c$$
 as $k
ightarrow \infty$

Conversely, suppose that there is a subsequence $\{x_{n_k}\}$ converging to c. Given any $\varepsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$k > K \Rightarrow d(x_{n_k}, c) < \varepsilon \Rightarrow x_{n_k} \in B_{\varepsilon}(c)$$

Therefore,

$$\{n : x_n \in B_{\varepsilon}(c)\} \supseteq \{n_{K+1}, n_{K+2}, n_{K+3}, \ldots\}$$

Since $n_{K+1} < n_{K+2} < n_{K+3} < \cdots$, this set is infinite, so c is a cluster point of $\{x_n\}$.

Sequences in \mathbf{R} and \mathbf{R}^m

Definition 7. A sequence of real numbers $\{x_n\}$ is increasing (decreasing) if $x_{n+1} \ge x_n$ ($x_{n+1} \le x_n$) for all n.

Definition 8. If $\{x_n\}$ is a sequence of real numbers, $\{x_n\}$ tends to infinity (written $x_n \to \infty$ or $\lim x_n = \infty$) if

 $\forall K \in \mathbf{R} \exists N(K) \text{ s.t. } n > N(K) \Rightarrow x_n > K$

Similarly define $x_n \to -\infty$ or $\lim x_n = -\infty$.

Increasing and Decreasing Sequences

Theorem 6 (Theorem 3.1'). Let $\{x_n\}$ be an increasing (decreasing) sequence of real numbers. Then

$$\lim_{n \to \infty} x_n = \sup\{x_n : n \in \mathbf{N}\}$$

$$\lim_{n \to \infty} x_n = \inf\{x_n : n \in \mathbb{N}\}$$
)

In particular, the limit exists.

Lim Sups and Lim Infs

Consider a sequence $\{x_n\}$ of real numbers. Let

$$\alpha_{n} = \sup\{x_{k} : k \ge n\} \\ = \sup\{x_{n}, x_{n+1}, x_{n+2}, \ldots\} \\ \beta_{n} = \inf\{x_{k} : k \ge n\} \\ = \inf\{x_{n}, x_{n+1}, x_{n+2}, \ldots\}$$

Either $\alpha_n = +\infty$ for all n, or $\alpha_n \in \mathbf{R}$ and $\alpha_1 \ge \alpha_2 \ge \alpha_3 \ge \cdots$.

Either $\beta_n = -\infty$ for all n, or $\beta_n \in \mathbf{R}$ and $\beta_1 \leq \beta_2 \leq \beta_3 \leq \cdots$.

Lim Sups and Lim Infs

Definition 9.

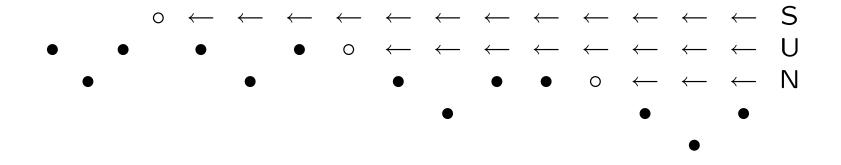
$$\limsup_{n \to \infty} x_n = \begin{cases} +\infty & \text{if } \alpha_n = +\infty \text{ for all } n \\ \lim \alpha_n & \text{otherwise.} \end{cases}$$
$$\lim_{n \to \infty} x_n = \begin{cases} -\infty & \text{if } \beta_n = -\infty \text{ for all } n \\ \lim \beta_n & \text{otherwise.} \end{cases}$$

Theorem 7. Let $\{x_n\}$ be a sequence of real numbers. Then

$$\lim_{n \to \infty} x_n = \gamma \in \mathbf{R} \cup \{-\infty, \infty\}$$

$$\Leftrightarrow \limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = \gamma$$

Increasing and Decreasing Subsequences **Theorem 8** (Theorem 3.2, Rising Sun Lemma). Every sequence of real numbers contains an increasing subsequence or a decreasing subsequence or both.



Proof. Let

$$S = \{s \in \mathbf{N} : x_s > x_n \quad \forall n > s\}$$

Either S is infinite, or S is finite.

If \boldsymbol{S} is infinite, let

$$n_1 = \min S$$

$$n_2 = \min (S \setminus \{n_1\})$$

$$n_3 = \min (S \setminus \{n_1, n_2\})$$

$$\vdots$$

$$n_{k+1} = \min (S \setminus \{n_1, n_2, \dots, n_k\})$$

Then $n_1 < n_2 < n_3 < \cdots$.

$$\begin{array}{ll} x_{n_1} > x_{n_2} & \text{ since } n_1 \in S \text{ and } n_2 > n_1 \\ x_{n_2} > x_{n_3} & \text{ since } n_2 \in S \text{ and } n_3 > n_2 \\ & \vdots \\ x_{n_k} > x_{n_{k+1}} & \text{ since } n_k \in S \text{ and } n_{k+1} > n_k \\ & \vdots \end{array}$$

so $\{x_{n_k}\}$ is a strictly decreasing subsequence of $\{x_n\}$.

If S is finite and nonempty, let $n_1 = (\max S) + 1$; if $S = \emptyset$, let $n_1 = 1$. Then

so $\{x_{n_k}\}$ is a (weakly) increasing subsequence of $\{x_n\}$.

Bolzano-Weierstrass Theorem

Theorem 9 (Thm. 3.3, Bolzano-Weierstrass). Every bounded sequence of real numbers contains a convergent subsequence.

Proof. Let $\{x_n\}$ be a bounded sequence of real numbers. By the Rising Sun Lemma, find an increasing or decreasing subsequence $\{x_{n_k}\}$. If $\{x_{n_k}\}$ is increasing, then by Theorem 3.1',

$$\lim x_{n_k} = \sup\{x_{n_k} : k \in \mathbb{N}\} \le \sup\{x_n : n \in \mathbb{N}\} < \infty$$

since the sequence is bounded; since the limit is finite, the subsequence converges. Similarly, if the subsequence is decreasing, it converges. $\hfill \Box$