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1. Open and Closed Sets
2. Continuity in Metric Spaces



Increasing and Decreasing Subsequences

Theorem 8 (Theorem 3.2, Rising Sun Lemma). Every sequence
of real numbers contains an increasing subsequence or a decreas-
ing subsequence or both.
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Proof. Let

S={seN:xzs>xn Vn> s}

Either S is infinite, or S is finite.

If S is infinite, let

ni
n2

n3

NE41

min S
min (S\ {n1})
min (S'\ {n1,n2})

min (S\{nl,ng, ..

7nk})



Thenny <npo <ng<---.

Tny > Tn, SiNCe€ni €S and no > ng
Tn, > Tpng  SiNCe€ mp € .S and n3 > nop

Tny, > Tnyy,  SINCe€ mp € S and ngyq > nyg

so {zn,} is a strictly decreasing subsequence of {zn}.

If S is finite and nonempty, let ny = (maxS) + 1; if S =0, let
n1 = 1. Then

ny €S so dno >njy S.t. Tn, > Tng
no € S so dnz > np S.t. xpg > Tn,

ng €S SO dngpiq1>ng st xn, > T,



so {xn,} is a (weakly) increasing subsequence of {zy}.

L]



Bolzano-Weierstrass T heorem

Theorem 9 (Thm. 3.3, Bolzano-Weierstrass). Every bounded
sequence of real numbers contains a convergent subsequence.

Proof. Let {z,} be a bounded sequence of real numbers. By the
Rising Sun Lemma, find an increasing or decreasing subsequence
{zn,}. If {zn,} is increasing, then by Theorem 3.1’,

lim xp, = sup{zn, : k€ N} <sup{znp:nc N} < oo

since the sequence is bounded; since the limit is finite, the sub-
sequence converges. Similarly, if the subsequence is decreasing,
it converges. [ ]
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Open and Closed Sets

Definition 1. Let (X,d) be a metric space. A set A C X is open
if

Ve A de>0s.t. Be(x) CA
A set C C X is closed if X \ C is open.
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Open and Closed Sets

Example: (a,b) is open in the metric space E! (R with the usual
Euclidean metric). Given x € (a,b), a< x <b. Let

e=min{z —a,b—xz} >0 H—— Y—>
2 (e o 7 o
Then << \o-x

y€ Be(x) = ye(x—e,x+¢)
C (z—(x—a),x+(b—2x))

= (a,b)
so B:(xz) C (a,b), so (a,bdb) is open.
Notice that ¢ depends on x; in particular, € gets smaller as «
nears the boundary of the set.

4



Open and Closed Sets

Example: In E!, [a,b] is closed. R\ [a,b] = (—o00,a) U (b,0) is a

union of two open sets, which must be open. (oA ek
Aor~007
W

Example: In the metric space X = [0,1][[0,1] iIs open. With
[0, 1] as the underlying metric space,
£ e (>N B&?(O):{$€ [0,1] : |$—O| <5}: [075) C LO\.\}
R L) = 3 %eSo 0l lx—weel = (1%, v\

I
Thus, openness and closednes§ depend on the underlying metric
space as well as on the set.



Open and Closed Sets

Example: Most sets are neither open nor closed. For example,
in EL, [0,1]U (2,3) is neither open nor closed.
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Example: An open set may consist of a single point. For ex-
ample, if X =N and d(m,n) = |m — n|, then

By p(1) = {meN:|m— 1| <1/2} = {1}

Since 1 is the only element of the set {1} and By ,5(1) = {1} C
{1}, the set {1} is open.



Open and Closed Sets

Example: In any metric space (X,d) both ) and X are open,
and both @ and X are closed.

To see that 0 is open, note that the statement

Vz € 0 3e > 0 Be(z) C 0

is vacuously true since there aren't any z € ). To see that X is
open, note that since B:(x) is by definition {z € X : d(z,z) < €},
it is trivially contained in X.

Since @ is open, X is closed; since X is open, 0 is closed.

\
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Open and Closed Sets

Example: Open balls are open sets.

Fivw xeX ., >0 . B 0D s open s

Suppose y € Be(x). Then d(x,y) <e. Let § = e —d(x,y) > 0. If
d(z,y) <9, then

%,:}/%&9 d(z,x) < d(z,y)+d(y,z) éf
< S+ d(z,y) /._f
= e—d(z,y) +d(z,y) // v l [
= € N [ /

N
so Bs(y) C Be(x), so B:(z) is open. /- - =



Open and Closed Sets
Theorem 1 (Thm. 4.2). Let (X,d) be a metric space. Then

1.  and X are both open, and both closed.

2. The union of an arbitrary (finite, countable, or uncountable)
collection of open sets is open.

3. The intersection of a finite collection of open sets is open.

Proof. 1. We have already shown this.



. Suppose {A)},ren is a collection of open sets.

re |J Ay = INgEASL T Ay, v o
AEN
= Je>0s.t. Be(z) C Ay, C [J Ay
AEN

SO UyepA) is open.

. Suppose Aj,...,Ap € X are open sets. If z € NI, A;, then

x €A, x € Ap,...,x € Ap,
T 4 A

SO [ P{f"‘\ ) - ST

() fl?._r'\

361 > O,...,gn > O s.t. Bgl(x) g Al,,Bgn(x) g An



207

>
2
\!
—~
(
e
g
-
—~
\
s
X
i
Y

M\
Let®
e =min{eq,...,en} >0
Then
B&?(x) g B&?l(x) g A17 <. '7B€(x) g B&?n(x) g An
SO

n
Be(z) C ﬂ A
1=1

which proves that N'_; A; is open.

L]

*Note this is where we need the fact that we are taking a finite intersection.
The infimum of an infinite set of positive numbers could be zero. And the
intersection of an infinite collection of open sets need not be open.



Interior, Closure, Exterior and Boundary

Definition 2. e The interior of A, denoted int A, is the largest
open set contained in A (the union of all open sets contained

in A). :
) A ~ open <= u\}"A ‘_?;A

e T he closure of A, denoted A, is the smallest closed set con-
taining A (the intersection of all closed sets containing A)

A wst Oesed & A 3;73\

e T he exterior of A, denoted ext A, is the largest open set

contained in X \ A. \
(= N OOAN )

e The boundary of A, denoted 9A = (X \A)N A
( = J_\ N\ \\_J\AK A ) 10
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Interior, Closure, Exterior and Boundary

R, o Xl chand asd mekrlic
Example: Let A=1[0,1]U(2,3). Then

intA = (0, 2 E303)
A p— Lob \j J L), -‘3]
ext A — int(X\A):‘Nv\)r(cuop)o)qLl)l&u L%)«»w\)
0A =

X\A)NA
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Sequences and Closed Sets

Theorem 2 (Thm. 4.13). A set A in a metric space (X,d) is
closed if and only if

{zn} CAjzp mz€X =€ A

Proof. Suppose A is closed. Then X \ A is open. Consider a
convergent sequence x, — x € X, with x, € A for alln. If x € A,
x € X\ A, so there is some € > 0 such that Bs(z) C X\ A (why?).
Since xz, — x, there exists N(e¢) such that

n> N(e) = xp € Be(z)
= xpn € A

12



contradiction. Therefore,

{zn} C Az w2z € X =2 €A






<— . Conversely, suppose

{zn} CAjzp mz€X =€ A

We need to show that A is closed, i.e. X \ A is open. Suppose
not, so X \ A is not open. Then there exists ¢ € X \ A such that

for every € > 0O,

Be(x) Z X \ A
so there exists y € B:(x) such that y € X\ A. Then y € A, hence

B:(a)(JA#D ~e>o






Construct a sequence {z,} as follows: for each n, choose

xn € Bi(x)NA

Given ¢ > 0, we can find N(eg) such that N(g) > % by the

Archimedean Property. So n > N(g) = % < ﬁe) < € and

zn € Bi(x) € Be(x). Thus z, — z. Then {x,} C A, z, — =,
SO «x enA, contradiction. Therefore, X \ A is open, so A is
closed. ]



-\

Continuity in Metric Spaces

Definition 3. Let (X,d) and (Y, p) be metric spaces. A function
f X — Y is continuous at a point xg € X if

Ve > 0335(330,6) >0 s.t. d(z,z0) < d(xg,e) = p(f(x), f(xg)) < ¢

~—

f is continuous if it is continuous at every element of its domain.

Note that é can depend on xg and e.

13
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Continuity in Metric Spaces

Continuity at zg requires:
e f(xzg) is defined; and

e cither

— zg is an isolated point of X, i.e. 3e > 0 s.t. B:(zq) = {z¢};
or

— limg .z, f(x) exists and equals f(xg)

UJ\N\ j(bb\ =\, y s 2o o) O s

% = Yo A G 1 CON L ¢ SN ?Q_,qu\ué%é-lz—



Continuity in Metric Spaces

Suppose f: X —Y and ACY. Define
FHA) ={zeX: f(z) € A}

Theorem 3 (Theorem 6.14). Let (X,d) and (Y,p) be metric
spaces, and f : X — Y. Then f is continuous if and only if

f_l(A) is open in X YVACY s.t. AisopeninyY

Alternatively, f is continuous <= f_l(C) is closed in X for
every closed C C Y.

15



= Proof. Suppose f is continuous. Given A C Y, A open, we must
show that f~1(A) is open in X. Suppose zg € f1(A). Let
yo = f(xg) € A. Since A is open, we can find € > 0 such that

B:(yg) C A. Since f is continuous, there exists § > 0 such that
//‘6‘9
we B ey = d(@,z0) <d = p(f(z), f(zo)) <e

= f(z) € Be(yo) <~
= f(x)e A
= x € f_l(A)

so Bs(zg) C f~1(A), so f~1(A) is open.

16
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«—: Conversely, suppose

f_l(A) isopen in X VACY s.t. AisopeninY

We need to show that f is continuous. Let zg € X, € > 0. Let
A = B:(f(zg)). A is an open ball, hence an open set, so f~1(A4)
is open in X. xg € f~1(A), so there exists § > 0 such that

Bs(xg) C f71(A).

d(x,z9) <6 =
Tl =
—
—

=

z € Bs(zo)

z € fH(A)

f(x) € A(= Be(f(z0)))
p(f(x), f(zg)) <e




=)

€ > O

Fow MG )C]

AS Yo ¢ —
S% Bs(Xo) ¢ X L%Q(—Pu__.,\))

A - Bs(yo)

OPE




Thus, we have shown that f is continuous at zg; since xg is an
arbitrary point in X, f is continuous. [ ]



Continuity in Metric Spaces

The composition of continuous functions is continuous:

Theorem 4 (Slightly weaker version of Thm. 6.10). Let (X,dx),
(Y,dy) and (Z,dy) be metric spaces. If f : X - Y andg:Y — Z
are continuous, then go f : X — Z is continuous.

Proof. Suppose A C Z is open. Since g is continuous, ¢~ 1(A) is
open in Y since f is continuous, f~1(¢g~1(A4)) is open in X.

O@L"‘*

We claim that

7 g A) = (go HTHA)

17



Observe

refHgHA) & f@)eg (A

& g(f(@)) e A
& (gofl)(z)ec A
& ze(gof)H(A)

which establishes the claim. This shows that (gof)~1(A) is open

in X, so go f is continuous.

L]



Uniform Continuity

Definition 4 (Uniform Continuity). Let (X,d) and (Y, p) be met-
ric spaces. A function f : X — Y is uniformly continuous if

Ve > 036(c) > 0 s.t. Vg € X, d(x,z0) < 6(e) = p(f(x), f(xg)) < €

Notice the important contrast with continuity: f is continuous
means

Vg € X,e > 0 36(xg,e) > 0 s.t. d(x,xg) < 0(xg,e) = p(f(x), f(xg)) < €

18



Uniform Continuity

Example: Consider f: (0,1] — R given by

fo) =21 ze(0.1]

xr
f is continuous (why?). We will show that f is not uniformly
continuous.

19



Let eg = 1. Take any ¢ > 0 with 6 < 1. Setx:%andy:‘s So

6.
o)
—yl=—-<5
T — y| c
But
|z — y 6/6
f(z) — fly)| = =

\ L\ |xy| 52/18
i e 3
% 4 = —>1=¢g

0

20



f(x)

f(x)=1/x

21



Uniform Continuity

P e ——v v
1 _:-'-_-'_:__—-:'— -

23

Example: If f : R — R and f/(z) is defined and
bounded on an interval [a,b], then f is uniformly continuous on
[a,b]. However, even a function with an unbounded derivative
may be uniformly continuous. Consider

f(z) = vz, = €[0,1]

f is continuous (why?). We will show that f is uniformly con-
tinuous. Given € > 0, let § = 2. Then given any zg € [0, 1],

22



lx — xzg| < & implies by the Fundamental Theorem of Calculus
T 1

LOQ—ﬂdt
[z—z0| 1

/O S

\/lw — x|

V6

=

€

[f(z) — f(zo)| =

IA

A

Thus, fis uniformly continuous on [0, 1], even though f/(z) — oo
as x — 0.



Lipschitz Continuity

Definition 5. Let X,Y be normed vector spaces, E C X. A
function f . X — Y is Lipschitz on E if

JK >0 s.t. [[f(z) = f(A)lly S Kllx —z||x Vz,z€E
f is locally Lipschitz on E if

Veg € E de > 0 s.t. f is Lipschitz on B:(xg) N E

(L~ 4
X’ L-J.P gg)\,\\.)\{, i___) i KO\? O S - )d’xo \\/3) V&

N

&&% OQ:)

Wby b

\ %8‘3\\
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Notions of Continuity

Lipschitz continuity is stronger than either continuity or uniform
continuity:

Se 2 = ocally Lipschitz = continuous

Lipschitz = uniformly continuous
[N ARN
Every Ol function[is locally Lipschitz. (Recall that a function

f:R™ — R" is said to be C! if all its first partial derivatives
exist and are continuous.)

24



Homeomorphisms

Definition 6. Let (X,d) and (Y, p) be metric spaces. A function
f: X —Y is called a homeomorphism if it is one-to-one, onto,
continuous, and its inverse function is continuous.

Topological properties are invariant under homeomorphism:

C % L & X

25















Homeomorphisms

Suppose that f is a homeomorphism and U C X. Let g= f1:
Y — X.

yeg '(U) & gy) €U RITREFaN
& ye f(U)
U openin X = ¢ 1(U) is open in (f(X), p)
= f(U) is open in (f(X),p)

This says that (X,d) and <f(X),p|f(X)) are identical in terms of
properties that can be characterized solely in terms of open sets;
such properties are called *“topological properties.”
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