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Open Covers
Definition 1. A collection of sets
U = {UA "\ E /\} c X

in a metric space (X,d) is an open cover of A if Uy is open for
all A e \ and

UxenlUy 2 A

Notice that A may be finite, countably infinite, or uncountable.



Compactness

Definition 2. A set A in a metric space is compact if every open
cover of A contains a finite subcover of A. In other words, if
{Uy : X € A} is an open cover of A, there exist n € N and
A1, - ,An € N such that

AQU,\lu---UU,\n

This definition does not say “A has a finite open cover” (fortu-
nately, since this is vacuous...).

Instead for any arbitrary open cover you must specify a finite
subcover of this given open cover.



Compactness

Example: (0, 1] is not compact in E1. (T o standes kv i)

To see this, let
1
U:{Um:(—,Q)mEN} (VS S prA N e

m
T hen
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Given any finite subset {Umy,...,Um,} of U, let
m = max{mi,...,mp} > ©

T hen

1
Uy Uy = Uy = (5,2) 2 (0, 1]

So (0,1] is not compact.

What about [0,1]? This argument doesn't work...



Compactness

Example: [0,00) is closed but not compact. (AT’ ww ckand ord

W‘»E‘:\(\f‘:(_.\

To see that [0,00) is not compact, let

U= {Un=(~1,m):me N} O sy = (1) o)

Given any finite subset e ™ > (o s
U 7"'7UTL :D/C/L s e SN -
{ mi m } d% ED‘C‘:‘:’)
of U, let
© < m=max{mi,...,mp} = ~o
Then
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Compactness

Theorem 1 (Thm. 8.14). Every closed subset A of a compact
metric space (X,d) is compact.

Proof. Let {Uy : A € A} be an open cover of A. In order to use
the compactness of X, we need to produce an open cover of X.
There are two ways to do this:

U>\ U (X \ A) L C)PM g;wc__c, Ia\ c,\g-s.ac\
/\U{AO}a U)\O :X\A

U\
/\/

We choose the first path, and let

Uy =U,U(X\A) ~ he A\






U’=U, U (X\A)
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Since A is closed, X \ A is open; since U, is open, SO is U/’\.

Thenz € X ==z € Aorxe X\A. Ifxe A INeANst x €
Uy CU). If instead z € X \ A, then VA € A, z € U}. Therefore,
X C UpeaUy, so {Uj : A€ A} is an open cover of X.

Since X is compact,

I, A EASE X CUY U UUY
Then

acEA = aeX
=S a,EU/’\Z, for some i
= ac Uy U(X\A)
= a € Uy,



SO
AgU,\lu---UU,\n

Thus A is compact.



Compactness

closed # compact, but the converse is true: nany WmeUie g

Theorem 2 (Thm. 8.15).If A is a compact subset of the metric
space (X,d), then A is closed.

Proof. Suppose by way of contradiction that A is not closed.
Then X \ A is not open, so we can find a point z € X \ A such
that, for every € > 0, AN B:(x) #= 0, and hence AN B:[x] # 0.

For n € N, let

Up =X \ Bl[x]
T
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Each U, is open, and

UpeNUn = X'\ {z} 2 4

since x € A. Therefore, {U, : n € N} is an open cover for A.

Since A is compact, there is a finite subcover {Upq,...,Un,}. Let
n = max{ni,. . nk} Then
Un = X\ Bilz] o~y
"
=) Un 2 Ui_1Un
D A

But AN Bi[z] #0, so AZ X \ Bi[z] = Uy, a contradiction which

proves that A is closed. [ ]




Sequential Compactness

Definition 3. A set A in a metric space (X,d) is sequentially
compact if every sequence of elements of A contains a conver-
gent subsequence whose limit lies in A.
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Sequential Compactness

Theorem 3 (Thms. 8.5, 8.11). A set A in a metric space (X, d)
iIs compact if and only if it is sequentially compact.

Proof. Suppose A is compact. We will show that A is sequen-
tially compact.

If not, we can find a sequence {x,} of elements of A such that
no subsequence converges to any element of A. Recall that a is
a cluster point of the sequence {z,} means that

Ve >0 {n:zpn € Be(a)} is infinite

and this is equivalent to the statement that there is a subse-
quence {xp, } converging to a. Thus, no element a € A can be a
cluster point for {z,}, and hence

Ya c A 350, > 0 s.t. {n - In, € Bga(a)} is finite (1)

12



Then
{Be¢,(a) :a € A}

is an open cover of A (if A is uncountable, it will be an un-
countable open cover). Since A is compact, there is a finite
subcover

{Bg&l (CL]_), Cee Bgam(am)} A< %aqg\a\\ I ‘“dgtai‘%“)

Then -0
N = {n:x,€ A} ( ) “\
S k‘- « |
g {n Tn E <B€a1 (a’l) U .o U Bgam(a’m))} “ OLU /i

= {n:1@n € Bey (@)} U+ U{n @y € Bey,, (am)}  ~ 7

so N is contained in a finite union of sets, each of which is finite
by Equation (1). Thus, N must be finite, a contradiction which
proves that A is sequentially compact.



For the converse, see de |la Fuente.



Totally Bounded Sets

Definition 4. A set A in a metric space (X, d) is totally bounded
if, for every € > 0,

Jr1,...,2n € A s.t. A C U B:(x;)

Pecadl: ASX \o_@i_r_w_?_\_&_-dt& 3ﬁ>>o od A xe X <A-
A S @%(x)
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Totally Bounded Sets
c R

Example: Take A = [0,1] with the Euclidean metric. Given
e>0, letn > % Then we may take
= > 1 2 n—1
L] — —HhIL2 — —H ..., Lpn—-1 —
n n n
—1
Then [0,1] C UPZ]B(%).
\/'&\: Lo
[ [ N —_ (
N ) — — —_ )\
A 3 o — -J-:- &*i - A=\ T
= - ~ - \



Totally Bounded Sets

Example: Consider X = [0, 1] with the discrete metric

)1 ifz#y
d(a:,y)—{ O ifz=y
X is not totally bounded. To see this, take ¢ = % Then for any
x, Be(x) = {x}, so given any finite set xq,...,zn,

U;,nle&?(xZ) — {xla s 7513n} Z [07 1]

However, X is bounded because X = B»(0).
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Totally Bounded Sets

Note that any totally bounded set in a metric space (X,d) is
also bounded. To see this, let A C X be totally bounded. Then
dx1,...,xn € A such that A C Bi(xz1)U---U B1(xn). Let

M=1+d(x1,z2) + -+ d(Tp_1,%n)

Then M < oo. Now fix a € A. We claim d(a,z1) < M. To
see this, notice that there is some nq € {1,...,n} for which
a € B1(xn,). Then

n-=\
d(a,zn,) + Y d(zp, Tp4+1)
k=1

IA

d(a,x1)

n-\

< 14+ ) dzg, zpy1)
h=1
= M

16






Totally Bounded Sets

Remark 4. Every compact subset of a metric space is totally
bounded:

Cg_‘;b)

Fix € and consider the open cover
)f\;

Z/[g — {Bg(a) . a & A}
If A is compact, then every open cover of A has a finite subcover:;
in particular, U must have a finite subcover, but this just says

that A is totally bounded.
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Compactness and Totally Bounded Sets

Theorem 5 (Thm. 8.16). Let A be a subset of a metric space
(X,d). Then A is compact if and only if it is complete and totally
bounded.

. Proof. Here is a sketch of the proof; see de |la Fuente for details.
Compact implies totally bounded (Remark 4). Suppose {zn} is
a Cauchy sequence in A. Since A is compact, A is sequentially
compact, hence {z,} has a convergent subsequence z,, — a € A.
Since {x,} is Cauchy, z, — a (Why?), so A is complete.

- Conversely, suppose A is complete and totally bounded. Let
{xn} be a sequence in A. Because A is totally bounded, we
can extract a Cauchy subsequence {zn, } (why?). Because A
is complete, xp, — a for some a € A, which shows that A is
sequentially compact and hence compact. [ ]

19



Compact «<— C(Closed and Totally Bounded

Putting these together: wdl vegsolds Lo \ecdbure S 7

Corollary 1. Let A be a subset of a complete metric space (X, d).
Then A is compact if and only if A is closed and totally bounded.

X C&B oo\ ==y AC—“—-X N~

A compact = A complete and totally bounded
= A closed and totally bounded
A closed and totally bounded = A complete and totally bounded
= A compact

20



Example: [0,1] is compact in El. (R« <Srandord melvic)

E \ Complelce o0l s Qeled ) —\-o%o..\\.:) Lo wnrded
=7 Loenw) w eas w\@o.c:kr

Note: compact = closed and bounded, but converse need not
be true.

E.g. [0, 1] with the discrete metric.

[/\".‘) »\3 \”-\\/\,\ é‘\;&c..( b&re MQ_}C'\I\.C_. 1& QJ\,@QXL& S \onJ\éQ.A\
WQJ( O~ I~ Y (=3 V) J( O W d
\5\3 0 Arc:v)\‘a-\‘\\g \D w) < ,....?.- fa) P\
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N
Heine-Borel Theorem - E1l

Theorem 6 (Thm. 8.19, Heine-Borel). If A C El, then A is
compact if and only if A is closed and bounded.

<—-Proof. Let A be a closed, bounded subset of R. Then A C [a,b]
for some interval [a,b]. Let {x,} be a sequence of elements of
[a,b]. By the Bolzano-Weierstrass Theorem, {z,} contains a
convergent subsequence with limit x € R. Since [a,b] is closed,
x € [a,b]. Thus, we have shown that [a,b] is sequentially com-
pact, hence compact. A is a closed subset of [a,b], hence A is
compact.

=>: Conversely, if A is compact, A is closed and bounded. [ ]

22



Heine-Borel T heorem - E"

Theorem 7 (Thm. 8.20, Heine-Borel). If A C E™, then A is
compact if and only if A is closed and bounded.

Proof. See de la Fuente. [ ]

Example: The closed interval

[a, 0] ={rx e R" :a; <x; <b; foreachi=1,...,n}

is compact in E™ for any a,b € R".
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Continuous Images of Compact Sets

Theorem 8 (8.21). Let (X,d) and (Y,p) be metric spaces. If
f: X — Y is continuous and C is a compact subset of (X,d),
then f(C) is compact in (Y, p).

Proof. There is a proof in de |la Fuente using sequential com-
pactness. Here we give an alternative proof using directly the
open cover definition of compactness.

Let {Uy, : A € A} be an open cover of f(C). For each point
c € C, f(c) € f(C) so f(c) € Uy, for some A € A, that is,
ce f1 <U,\C). Thus the collection {f‘l (Uy) : N E /\} is a cover
of C; in addition, since f is continuous, each set f_]L (Uy) is

24



open in C, so {f‘l (Uy) : A€ /\} is an open cover of C. Since C
IS compact, there is a finite subcover

{1 (Uy) - F7H(UN)]
of C. Given z € f(C), there exi%té\c € C such that f(¢) = z, and

-

ce f1 (U/\Z.) for some i, so x € Uy,. Thus, {Uy,,...,Uy,} is a
finite subcover of f(C), so f(C) is compact. [ ]
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Extreme Value Theorem

Corollary 2 (Thm. 8.22, Extreme Value Theorem). Let C be a
compact set in a metric space (X,d), and suppose f:C — R is
continuous. Then f is bounded on C and attains its minimum
and maximum on C.

c
Proof\f(C) is compact\by Theorem 8.21, hence closed and

—— =

bounded. Let M = sup f(C); M < oco. Then Vm > 0 there
exists y,, € f(C) such that Sewo D ou E %(C\

M_iéymSM sk M-—i fgaiu\J\

m

SO ym — M and {ym} C f(C). Since f(C) is closed, M € f(C),
i.e. there exists ¢ € C such that f(¢) = M = sup f(C), so
f attains its maximum at c¢. The proof for the minimum is
similar. [ ]
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Compactness and Uniform Continuity

Theorem 9 (Thm. 8.24). Let (X,d) and (Y, p) be metric spaces,
C a compact subset of X, and f . C — Y continuous. Then f is
uniformly continuous on C'.

Proof. Fix e > 0. We ighore X and consider f as defined on the
metric space (C,d). Given c e C, find 6(c¢) > 0 such that

z € C, d(z,c) < 25(c) = p(f(z), £(c)) < %
et
Ue = Bj(py(©)
Then
{Uec:ce C}

26



IS an open cover of C. Since C is compact, there is a finite
subcover

'

{UC]_7"'7UCTL} C_< ’\Jk)\c'\,

—

Let
§ =min{d(cy1),...,6(cn)} > ©

Given z,y € C with d(z,y) < §. note that =z € U. for some
i€{1,...,n}, so d(x,c;) < d(c;).

d(y, c;) d(y, x) + d(z, ¢;)
o+ 6(¢;)

6(ci) + d(c;)
26(c;)

IAN A IA



SO

p(f(x), f(y)) < p(f(x), f(ci)) + p(f(c), f(y))

which proves that f is uniformly continuous.
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