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Open Covers

Definition 1. A collection of sets

U = {Uλ : λ ∈ Λ}

in a metric space (X, d) is an open cover of A if Uλ is open for

all λ ∈ Λ and

∪λ∈ΛUλ ⊇ A

Notice that Λ may be finite, countably infinite, or uncountable.
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Compactness

Definition 2. A set A in a metric space is compact if every open

cover of A contains a finite subcover of A. In other words, if

{Uλ : λ ∈ Λ} is an open cover of A, there exist n ∈ N and

λ1, · · · , λn ∈ Λ such that

A ⊆ Uλ1
∪ · · · ∪ Uλn

This definition does not say “A has a finite open cover” (fortu-

nately, since this is vacuous...).

Instead for any arbitrary open cover you must specify a finite

subcover of this given open cover.
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Compactness

Example: (0,1] is not compact in E1.

To see this, let

U =

{

Um =

(

1

m
,2

)

: m ∈ N

}

Then

∪m∈NUm = (0,2) ⊃ (0,1]
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Given any finite subset {Um1, . . . , Umn} of U, let

m = max{m1, . . . , mn}

Then

∪n
i=1Umi = Um =

(

1

m
,2

)

6⊇ (0,1]

So (0,1] is not compact.

What about [0,1]? This argument doesn’t work...
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Compactness

Example: [0,∞) is closed but not compact.

To see that [0,∞) is not compact, let

U = {Um = (−1, m) : m ∈ N}

Given any finite subset

{Um1, . . . , Umn}

of U, let

m = max{m1, . . . , mn}

Then

Um1 ∪ · · · ∪ Umn = (−1, m) 6⊇ [0,∞)
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Compactness

Theorem 1 (Thm. 8.14). Every closed subset A of a compact

metric space (X, d) is compact.

Proof. Let {Uλ : λ ∈ Λ} be an open cover of A. In order to use

the compactness of X, we need to produce an open cover of X.

There are two ways to do this:

U ′
λ = Uλ ∪ (X \ A)

Λ′ = Λ ∪ {λ0}, Uλ0
= X \ A

We choose the first path, and let

U ′
λ = Uλ ∪ (X \ A)
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Since A is closed, X \ A is open; since Uλ is open, so is U ′
λ.

Then x ∈ X ⇒ x ∈ A or x ∈ X \ A. If x ∈ A, ∃λ ∈ Λ s.t. x ∈

Uλ ⊆ U ′
λ. If instead x ∈ X \ A, then ∀λ ∈ Λ, x ∈ U ′

λ. Therefore,

X ⊆ ∪λ∈ΛU ′
λ, so {U ′

λ : λ ∈ Λ} is an open cover of X.

Since X is compact,

∃λ1, . . . , λn ∈ Λ s.t. X ⊆ U ′
λ1

∪ · · · ∪ U ′
λn

Then

a ∈ A ⇒ a ∈ X

⇒ a ∈ U ′
λi

for some i

⇒ a ∈ Uλi
∪ (X \ A)

⇒ a ∈ Uλi



so

A ⊆ Uλ1
∪ · · · ∪ Uλn

Thus A is compact.



Compactness

closed 6⇒ compact, but the converse is true:

Theorem 2 (Thm. 8.15). If A is a compact subset of the metric

space (X, d), then A is closed.

Proof. Suppose by way of contradiction that A is not closed.

Then X \ A is not open, so we can find a point x ∈ X \ A such

that, for every ε > 0, A ∩ Bε(x) 6= ∅, and hence A ∩ Bε[x] 6= ∅.

For n ∈ N, let

Un = X \ B1
n
[x]
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Each Un is open, and

∪n∈NUn = X \ {x} ⊇ A

since x 6∈ A. Therefore, {Un : n ∈ N} is an open cover for A.

Since A is compact, there is a finite subcover {Un1, . . . , Unk}. Let

n = max{n1, . . . , nk}. Then

Un = X \ B1
n
[x]

⊇ X \ B 1
nj

[x] (j = 1, . . . , k)

Un ⊇ ∪k
j=1Unj

⊇ A

But A ∩ B1
n
[x] 6= ∅, so A 6⊆ X \B1

n
[x] = Un, a contradiction which

proves that A is closed.



Sequential Compactness

Definition 3. A set A in a metric space (X, d) is sequentially

compact if every sequence of elements of A contains a conver-

gent subsequence whose limit lies in A.

11



Sequential Compactness
Theorem 3 (Thms. 8.5, 8.11).A set A in a metric space (X, d)

is compact if and only if it is sequentially compact.

Proof. Suppose A is compact. We will show that A is sequen-

tially compact.

If not, we can find a sequence {xn} of elements of A such that

no subsequence converges to any element of A. Recall that a is

a cluster point of the sequence {xn} means that

∀ε > 0 {n : xn ∈ Bε(a)} is infinite

and this is equivalent to the statement that there is a subse-

quence {xnk} converging to a. Thus, no element a ∈ A can be a

cluster point for {xn}, and hence

∀a ∈ A ∃εa > 0 s.t. {n : xn ∈ Bεa(a)} is finite (1)

12



Then

{Bεa(a) : a ∈ A}

is an open cover of A (if A is uncountable, it will be an un-

countable open cover). Since A is compact, there is a finite

subcover
{

Bεa1
(a1), . . . , Bεam(am)

}

Then

N = {n : xn ∈ A}

⊆
{

n : xn ∈
(

Bεa1
(a1) ∪ · · · ∪ Bεam(am)

)}

= {n : xn ∈ Bεa1
(a1)} ∪ · · · ∪ {n : xn ∈ Bεam(am)}

so N is contained in a finite union of sets, each of which is finite

by Equation (1). Thus, N must be finite, a contradiction which

proves that A is sequentially compact.



For the converse, see de la Fuente.



Totally Bounded Sets

Definition 4. A set A in a metric space (X, d) is totally bounded

if, for every ε > 0,

∃x1, . . . , xn ∈ A s.t. A ⊆ ∪n
i=1Bε(xi)
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Totally Bounded Sets

Example: Take A = [0,1] with the Euclidean metric. Given

ε > 0, let n > 1
ε
. Then we may take

x1 =
1

n
, x2 =

2

n
, . . . , xn−1 =

n − 1

n

Then [0,1] ⊂ ∪n−1
k=1Bε(

k
n
).
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Totally Bounded Sets

Example: Consider X = [0,1] with the discrete metric

d(x, y) =

{

1 if x 6= y

0 if x = y

X is not totally bounded. To see this, take ε = 1
2. Then for any

x, Bε(x) = {x}, so given any finite set x1, . . . , xn,

∪n
i=1Bε(xi) = {x1, . . . , xn} 6⊇ [0,1]

However, X is bounded because X = B2(0).
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Totally Bounded Sets

Note that any totally bounded set in a metric space (X, d) is

also bounded. To see this, let A ⊂ X be totally bounded. Then

∃x1, . . . , xn ∈ A such that A ⊂ B1(x1) ∪ · · · ∪ B1(xn). Let

M = 1 + d(x1, x2) + · · · + d(xn−1, xn)

Then M < ∞. Now fix a ∈ A. We claim d(a, x1) < M . To

see this, notice that there is some na ∈ {1, . . . , n} for which

a ∈ B1(xna). Then

d(a, x1) ≤ d(a, xna) +
n

∑

k=1

d(xk, xk+1)

< 1 +
n

∑

k=1

d(xk, xk+1)

= M
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Totally Bounded Sets

Remark 4. Every compact subset of a metric space is totally

bounded:

Fix ε and consider the open cover

Uε = {Bε(a) : a ∈ A}

If A is compact, then every open cover of A has a finite subcover;

in particular, Uε must have a finite subcover, but this just says

that A is totally bounded.
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Compactness and Totally Bounded Sets
Theorem 5 (Thm. 8.16). Let A be a subset of a metric space

(X, d). Then A is compact if and only if it is complete and totally

bounded.

Proof. Here is a sketch of the proof; see de la Fuente for details.

Compact implies totally bounded (Remark 4). Suppose {xn} is

a Cauchy sequence in A. Since A is compact, A is sequentially

compact, hence {xn} has a convergent subsequence xnk
→ a ∈ A.

Since {xn} is Cauchy, xn → a (why?), so A is complete.

Conversely, suppose A is complete and totally bounded. Let

{xn} be a sequence in A. Because A is totally bounded, we

can extract a Cauchy subsequence {xnk
} (why?). Because A

is complete, xnk
→ a for some a ∈ A, which shows that A is

sequentially compact and hence compact.
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Compact ⇐⇒ Closed and Totally Bounded

Putting these together:

Corollary 1.Let A be a subset of a complete metric space (X, d).

Then A is compact if and only if A is closed and totally bounded.

A compact ⇒ A complete and totally bounded

⇒ A closed and totally bounded

A closed and totally bounded ⇒ A complete and totally bounded

⇒ A compact
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Example: [0,1] is compact in E1.

Note: compact ⇒ closed and bounded, but converse need not

be true.

E.g. [0,1] with the discrete metric.
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Heine-Borel Theorem - E
1

Theorem 6 (Thm. 8.19, Heine-Borel). If A ⊆ E1, then A is

compact if and only if A is closed and bounded.

Proof. Let A be a closed, bounded subset of R. Then A ⊆ [a, b]

for some interval [a, b]. Let {xn} be a sequence of elements of

[a, b]. By the Bolzano-Weierstrass Theorem, {xn} contains a

convergent subsequence with limit x ∈ R. Since [a, b] is closed,

x ∈ [a, b]. Thus, we have shown that [a, b] is sequentially com-

pact, hence compact. A is a closed subset of [a, b], hence A is

compact.

Conversely, if A is compact, A is closed and bounded.
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Heine-Borel Theorem - E
n

Theorem 7 (Thm. 8.20, Heine-Borel). If A ⊆ En, then A is

compact if and only if A is closed and bounded.

Proof. See de la Fuente.

Example: The closed interval

[a, b] = {x ∈ R
n : ai ≤ xi ≤ bi for each i = 1, . . . , n}

is compact in En for any a, b ∈ Rn.
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Continuous Images of Compact Sets

Theorem 8 (8.21). Let (X, d) and (Y, ρ) be metric spaces. If

f : X → Y is continuous and C is a compact subset of (X, d),

then f(C) is compact in (Y, ρ).

Proof. There is a proof in de la Fuente using sequential com-

pactness. Here we give an alternative proof using directly the

open cover definition of compactness.

Let {Uλ : λ ∈ Λ} be an open cover of f(C). For each point

c ∈ C, f(c) ∈ f(C) so f(c) ∈ Uλc
for some λc ∈ Λ, that is,

c ∈ f−1
(

Uλc

)

. Thus the collection
{

f−1 (Uλ) : λ ∈ Λ
}

is a cover

of C; in addition, since f is continuous, each set f−1 (Uλ) is
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open in C, so
{

f−1 (Uλ) : λ ∈ Λ
}

is an open cover of C. Since C

is compact, there is a finite subcover
{

f−1
(

Uλ1

)

, . . . , f−1
(

Uλn

)}

of C. Given x ∈ f(C), there exists c ∈ C such that f(c) = x, and

c ∈ f−1
(

Uλi

)

for some i, so x ∈ Uλi
. Thus, {Uλ1

, . . . , Uλn
} is a

finite subcover of f(C), so f(C) is compact.



Extreme Value Theorem

Corollary 2 (Thm. 8.22, Extreme Value Theorem). Let C be a

compact set in a metric space (X, d), and suppose f : C → R is

continuous. Then f is bounded on C and attains its minimum

and maximum on C.

Proof. f(C) is compact by Theorem 8.21, hence closed and

bounded. Let M = sup f(C); M < ∞. Then ∀m > 0 there

exists ym ∈ f(C) such that

M −
1

m
≤ ym ≤ M

So ym → M and {ym} ⊆ f(C). Since f(C) is closed, M ∈ f(C),

i.e. there exists c ∈ C such that f(c) = M = sup f(C), so

f attains its maximum at c. The proof for the minimum is

similar.
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Compactness and Uniform Continuity

Theorem 9 (Thm. 8.24).Let (X, d) and (Y, ρ) be metric spaces,

C a compact subset of X, and f : C → Y continuous. Then f is

uniformly continuous on C.

Proof. Fix ε > 0. We ignore X and consider f as defined on the

metric space (C, d). Given c ∈ C, find δ(c) > 0 such that

x ∈ C, d(x, c) < 2δ(c) ⇒ ρ(f(x), f(c)) <
ε

2

Let

Uc = Bδ(c)(c)

Then

{Uc : c ∈ C}
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is an open cover of C. Since C is compact, there is a finite

subcover

{Uc1, . . . , Ucn}

Let

δ = min{δ(c1), . . . , δ(cn)}

Given x, y ∈ C with d(x, y) < δ, note that x ∈ Uci for some

i ∈ {1, . . . , n}, so d(x, ci) < δ(ci).

d(y, ci) ≤ d(y, x) + d(x, ci)

< δ + δ(ci)

≤ δ(ci) + δ(ci)

= 2δ(ci)



so

ρ(f(x), f(y)) ≤ ρ(f(x), f(ci)) + ρ(f(ci), f(y))

<
ε

2
+

ε

2
= ε

which proves that f is uniformly continuous.










