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Lecture 8
Outline
1. Bases

2. Linear Transformations
3. Isomorphisms



Linear Combinations and Spans

Definition 1. Let X be a vector space over a field F. A linear
combination of xz1,...,xzn € X IS a vector of the form

n
y= > oz; Wwhere ay,...,an € F

i=1
a; IS the coefficient of x; in the linear combination.

If' V C X, the span of V, denoted spanV, is the set of all linear
combinations of elements of V.

A set V C X spans X if spanV = X.



Linear Dependence and Independence

Definition 2. A set V C X is linearly dependent if there exist

v1,...,op €V and ay,...,an € F not all zero such that
n
Z Ozi?}i:O
i=1

A setV C X jslinearly independent if it is not linearly dependent.

Thus V C X is linearly independent if and only if

n
Zaivizo, v, €V Vi=0a; =0 W1
=1



Bases

Definition 3. A Hamel basis (often just called a basis) of a vector
space X is a linearly independent set of vectors in X that spans
X.

Example: {(1,0),(0,1)} is a basis for R? (this is the standard
basis).
SN
Lo+ plesy = Ly R)



Example, cont: {(1,1),(—1,1)} is another basis for R?:
a(l,1)+ 38(—1,1) for some o, 3 € R

Suppose (z,y)

r = a—0 = (“"§JM+’(3\
y = a+p
r+y = 2«
= o = Tty
2
y—x = 20
_ y==
=0 = _2|_
— Y gL

Since (z,y) is an arbitrary element of R?, {(1,1),(—1,1)} spans
R2. If (z,y) = (0,0),



so the coefficients are all zero, so {(1,1),(—1,1)} is linearly in-

dependent. Since it is linearly independent and spans RQ, it is a
basis.

Example: {(1,0,0),(0,1,0)} is not a basis of R3, because it
does not span R3. Coyn, D) Wil 2RO v T Span
Example: {(1,0),(0,1),(1,1)} is not a basis for R2.

SO the set is not linearly independent.



Bases

Theorem 1 (Thm. 1.2"). Let V be a Hamel basis for X. Then
every vector x € X has a unique representation as a linear combi-

nation of a finite number of elements of V (with all coefficients
nonzero).*

Proof. Let x € X. Since V spans X, we can write

where S1 is finite, as € F', as # 0, and vs € V for each s € 57.
Now, suppose

L — Z AsVs — Z Bsvs

s€ES sESH

*The '_unique representatidr; of 0 is 0 = Z@ a;b;.

—_ —
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where S5 is finite, Bs € F', Bs # 0, and vs € V for each s € S5.
Let S = 57 USo, and define

as =0 for se& Sy\ Sy
Bs =0 for se&S1\ 5

Then
O = z—=x

= Z AsVs — Z Bsvs
s€ES sESH

— Z AsVs — Z Bsvs
SES SES

— Z (as — Bs)vs
seS

Since V is linearly independent, we must have as — 8s = 0, sO
as = O, for all s € S.

seES1asFF0&5 080 s€ 55



SO S1 = 55 and as = (s for s € S = S5, so the representation is
unique. [ ]



Bases

Theorem 2. Every vector space has a Hamel basis.

Proof. The proof uses the Axiom of Choice. Indeed, the theorem
is equivalent to the Axiom of Choice. [ ]



Bases

A closely related result, from which you can derive the previous

result, shows that any linearly independent set V in a vector
space X can be extended to a basis of X.

Theorem 3. If X is a vector space andV C X is linearly indepen-

dent, then there exists a linearly independent set W C X such
that

VCCWCspanW =X



Bases

Theorem 4. Any two Hamel bases of a vector space X have the
same cardinality (are numerically equivalent).

Proof. The proof depends on the so-called Exchange Lemma,
whose idea we sketch. Suppose that V = {v), : A € A} and
W = {wy : v € '} are Hamel bases of X. Remove one vector
Vg from V, so that it no longer spans (if it did still span, then
vy, Would be a linear combination of other elements of V', and
V' would not be linearly independent). If wy € span(V \ {vy,})
for every v € I', then since W spans, V \ {v,,} would also span,
contradiction. Thus, we can choose g € I' such that

W~y € SPan <V \ {”/\o})



N,

W\
Because w,, € spanV, we can write

n
Wyo = Z iU\,
1=0

where aq, the coefficient of Vg is not zero (if it were, then we

would have wy, € span <V \ {v,\o})). Since ag #= 0, we can solve
for vy, as a linear combination of wy, and vy,,...,vy,, SO

span ((V\ {vag}) Ufwa}) @ ¥ >
D spanV = cgen Lk\s\’x\b\cﬂw\’ 7\"'>c5>

SO
((V\ {ag}) U{wro})
spans X. From the fact that w,, € span <V\{U>\O}) one can



<
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\ N
VORI TR A
Bwk\é N
U\_)\ 1\}\)80) ?Sbi[
show that

((V\ {vag}) U{wyo})
is linearly independent, so it is a basis of X. Repeat this process
to exchange every element of V with an element of W (when
V is uncountable, this is done by a process called transfinite
induction). At the end, we obtain a bijection from V to W, so
that V and W are numerically equivalent. [ ]



Dimension

Definition 4. The dimension of a vector space X, denoted dim X,
is the cardinality of any basis of X.

For V C X, |V| denotes the cardinality of the set V.

- X A K= N for some € N,

Ko e \r\”&c,fé\\mengl@me_\ _
T~

N rx.-(;'"\ J\CXCQ - C,\\.\N\Q\f\%\ C}J\@’\ .

OV erwonse Y s

)
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Dimension

Example: The set of all m X n real-valued matrices is a vector
space over R. A basis is given by

{Bij :1<i<m,1<j<n} T wwa welite

where
gD < ) {1 if k=14 and £ = j

0 | g
A2 Ei 0 otherwise.

M&:M k/@_

The dimension of the vector space of m X n matrices is mn.

QT L - - PcS - N
b o ---~ O --- O
E‘gf _ R
U S
R N 11
N > ~- © - -9



Dimension and Dependence

Theorem 5 (Thm. 1.4). SupposedimX =n e N. IfV C X and
V| >n, then V is linearly dependent.

ck N \S ummr\\/}‘xﬁéq_%mda&'\(‘ ) Se \) N
lhaso WO . K) and

~ < N\ ZZ\\J\)\

TN -

\se Q,%Jf@kd‘&é‘*aq
4 NN =)

(o d g O (IO -
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Dimension and Dependence

Theorem 6 (Thm. 1.5"). Suppose dimX =ne N, V C X, and
V| =n.

e ITV is linearly independent, then V spans X, soV is a Hamel
basis.

o IfV spans X, then V is linearly independent, soV is a Hamel
basis. | | |
@ OS(\'\.Q,J‘QJ\%; NS Y  fe o Leene W r& %Jw\kj\l\ \]_;_ \J\)}
N \\A)\ > \\J\ =N
C-Dv\.-&r\/_&-é\\ (:_:\-C S~ \ A
@ O'\J\/\Q_I \*-)\Q_;Ef) C_,\,\':)o%e.__ \} :LE \) C ba_g\& —-Q-c,r X.lg) M
SRR N AN



Linear Transformations

Definition 5. Let X and Y be two vector spaces over the field
F. WesayT : X — Y is a linear transformation if

T(a1x1 + asxo) = T (x1) + axT(z2) Vi, z0 € X,a1,0p € F

\/\/;Z«/ Se A SNy A= D
X < \_/\fﬁ\,&a/ \6‘_‘-‘*”—((-?(4’-\3

Let L(X,Y) denote the set of all linear transformations from X
to Y.

L]
D

E%\M”}

Gy ATy AR R €N

)d&&?) %Xeﬁ

(RN RY T
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T o LX) T0) €

Linear Transformations

Theorem 7. L(X,Y) is a vector space over F'.

Proof. First, define linear combinations in L(X,Y) as follows.
For T1,1T> € L(X,Y) and «,3 € F, define oIy + 815 by

(a1 + BT%)(z) = oT1(z) + BT>(x)
We need to show that aT7 4+ 871> € L(X,Y).

(aTy + BT2)(yz1 + d72)
Ty (yxy1 + dz2) + BT> (v + - 022) [ sefimiion

= a(yT1(z1) + 6T1(x2)) + 8 (WTQ(M) + 6T (w0)) (T, T, V)
= y(aT1(x1) + BT2(x1)) + 6 (aT1(x2) + BT2(22)) (coness e
v (T + 1) (x1) + 6 (o171 + BT2) (z2)

(seSAndom ago ~)
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IR OZ DE L0 = LOS)

L Fe Ly L4 )

so aTy + 8T € L(X,Y).

The rest of the proof involves straightforward checking of the
vector space axioms. [ ]



Compositions of Linear Transformations
X) \;\)’% QC X ol SPaceg DU Sowme &,\Qc\& -
Given R € L(X,Y) and S € L(Y,Z), SoR : X — Z. We will

show that SoR € L(X,Z), that is, the composition of two linear
transformations is linear.

(SoR)(amy + Bxo) = S(R(azxi+ Bx2)) (hebn & SR)

= S(aR(z1) + BR(x2)) (@ Gaear)
= aS(R(z1)) + BS(R(x2)) (S Urer)
a(S o R)(21) + B(S 0 R)(22) (s & <)

so SoRe L(X, Z).

16



Kernel and Rank
Definition 6. Let T € L(X,Y).

e Theimage of T isImT =T(X) < \\ SN

(S
s (o~ Show TV is o Jecfker sobspe

e The kernel of T iskerT ={x € X : T(xz) = 0} Cao\\ Spaes st \)

e Therank of T is RankT = dim(ImT)

RecasN = o W & \,L s o wlcxkor  SabhSpoc i.‘(r o < o
\J““C}'QJ— _\‘) ° —Lﬁgm %

\\e_c;scc:f“ S QoL o~eN F

\J\) —Q- >< U\D*‘\ZS “\“D o \;e’_C_;\—b/“ gw‘b&(dl%‘%

1 T
‘:..—;j %’U-‘v)u_) e\J\B %o( %é
¢ s sla B e W



Rank-Nullity Theorem

Theorem 8 (Thms. 2.9, 2.7, 2.6: The Rank-Nullity Theorem).
Let X be a finite-dimensional vector space, T € L(X,Y ). Then
Im T and ker ' are vector subspaces of Y and X respectively, and

dimX =dimkerT 4+ RankT

\_/—\/\—/
: \ g \)C.t‘_f("c"'- Sulsep@ece s
5\(_:"7(_/\’\ : o S\’\'DW IV‘V\ Kq_,f \ oS ?
7 . \
DL e s
 Kaxe AN Vel e e «~ X
\DOL_&\S- SYQ‘(
A o we) e
o Q_J\,CA-C/\c\ = {\J\jm]ﬂv_)w) ) Rt B
- - | . > ._\a—v"‘\;
s SV~oLO i V), sy (\o_r\k @ oo oSS &
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Kernel and Rank

Theorem 9 (Thm. 2.13).T € L(X,Y) is one-to-one if and only
if kerT = {0}.

. Proof. Suppose T is one-to-one. Suppose =z € kerI'. Then
T(x) = 0. But since T is linear, T(0) =T(0-0) =0-T7T(0) = 0.
Since T is one-to-one, x = 0, so kerT = {0}.

Conversely, suppose that kerT = {0}. Suppose T(x1) = T(z2).
Then

T(x1) — T (x2)
0

which says 1 —xo € ker1', sO x1 — x> =0, SO x1 = xo. Thus, T
is one-to-one. [ ]

T(x1 — x2)

19



Invertible Linear Transformations

Definition 7.7 € L(X,Y) is invertible if there exists a function
S:Y — X such that
S(T(z)) = z Vxe X SSU = dy
T(S(y) = y VyeY oo e (d
Denote S by T 1.

Note that T is invertible if and only if it is one-to-one and onto.
This is just the condition for the existence of an inverse function.
The linearity of the inverse follows from the linearity of T.>

( W W W o —Y\";‘&)
20



Invertible Linear Transformations

Theorem 10 (Thm. 2.11).If T € L(X,Y) is invertible, then
T-1e L(Y,X), i.e. T is linear.

Proof. Suppose o, € FFand v,w € Y. Since T is invertible, there
exist unique v/, w’ € X such that

T = v T 1) = o
T(w) = w T Hw) = o
Then N o
T Y aw+ pw) = T1 <ozT(v/) + 5T(w/)) (dekinKon

T~ (T (o' + Bu')) (7 e
av’ + Buw’ ( Sekw & T
T 1 () + BT Hw)  (sekn s =)

21



so 71
e L(Y, X).



Linear Transformations and Bases

Theorem 11 (Thm. 3.2).Let X and Y be two vector spaces
over the same field F, and let V. = {vy : A € A} be a basis

for X. Then a linear transformation T € L(X,Y) is completely
determined by its values on V, that is:

1. Given any set {yy : A€ N} CY,dT € L(X,Y) s.t.

T(UA) =Yy, VAEN

2. IfF S, T € L(X,Y) and S(vy) =T(vy) forallXxe N, then S =T.

22



Proof. 1. If x € X, x has a unique representation of the form

n
L = Zai?})\i Ozi#Oi:].,...,n

i=1
(Recall that if £ = 0, then n = 0.) Define
n ,-’T(“\J X"\ < "T(\J \- P
= = N -"3);
T(x) = QY .
@) z; A L Lw dew )

Then T'(z) € Y. The verification that T is linear is left as an
exercise.

23



2. Suppose S(vy) = T(vy) for all A € A. Given z € X,

so S="1T.

S(x)

1=1
ik S end U agiee
Sorf) (L7700
n
T (Z (]{7;’0)\2.> ( Vv k_AJ\Q_Q_,J->
1=1
T(x)



Isomorphisms

Definition 8. Two vector spaces X and Y over a field F are
isomorphic if there is an invertible T € L(X,Y).

T € L(X,Y) is an isomorphism if it is invertible (one-to-one and
onto).

Isomorphic vector spaces are essentially indistinguishable as vec-
tor spaces.

24



Isomorphisms

Theorem 12 (Thm. 3.3). Two vector spaces X andY over the
same field are isomorphic if and only if dimX =dimY.

Proof. Suppose X and Y are isomorphic, and let T e L(X,Y) be
an isomorphism. Let

U= {UJ)\ T A E /\}
be a basis of X, and let vy, = T'(u)) for each A € A. Set
V = {U)\ T E /\}

Since T is one-to-one, U and V have the same cardinality. If
A\

T

25



y €Y, then there exists x € X such that

y = T(z) :

OQ\T<U>\) ( u,\m{\‘-\-\3 S )

OQ\U)\ (&a&m c.gﬁ Non)

which shows that V spans Y. To see that V is linearly indepen-



dent, suppose

Since T is one-to-one, kerT = {0}, so

m

> Biuy, =

i=1
Since U is a basis, we have 1 = --- = 85, = 0, so V is lin-
early independent. Thus, V is a basis of Y since U and V are
numerically equivalent, dimX = dimY.

Ly

Lol = UV



—
——

Now suppose dimX =dimY. Let
U=A{uy: AXeA}and V ={vy,: A €N}

be bases of X and Y; note we can use the same index set A for
both because dimX = dimY. By Theorem 3.2, there is a unique

i

pv e UN O A v oY



T € L(X,Y) such that T'(uy) = vy forall A e A. If T'(z) = 0, then

T o =V 0O = T(x)

n
= T(Z Oéz'UAZ-)
1=1

;T <u>\2) ( T Uaeas)

QU ( Tleoy = u e X))

a1 =+ =ap =0 since V is a basis
x=0 = fic&’; SN

kerT = {0}

T is one-to-one

L 44l



,T— \L\S- 0’\.‘3‘"‘:’ “
IfyeY, write y = 2?7’:1 ﬁi?))\z.. Let

m
z =) Biuy,

i=1
T hen

T() = T(i @;UAZ-)
— Z 5@T(u)\) (___Y Lmeer

:y_

so T is onto, so T is an isomorphism and X,Y are isomorphic. [
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