Econ 204 2020

Lecture 8

Outline

1. Bases
2. Linear Transformations
3. Isomorphisms
Linear Combinations and Spans

Definition 1. Let X be a vector space over a field F. A linear combination of $x_1, \ldots, x_n \in X$ is a vector of the form

$$y = \sum_{i=1}^{n} \alpha_i x_i$$

where $\alpha_1, \ldots, \alpha_n \in F$.

α_i is the coefficient of x_i in the linear combination.

If $V \subseteq X$, the span of V, denoted $\text{span} \, V$, is the set of all linear combinations of elements of V.

A set $V \subseteq X$ spans X if $\text{span} \, V = X$.
Linear Dependence and Independence

Definition 2. A set \(V \subseteq X \) is linearly dependent if there exist \(v_1, \ldots, v_n \in V \) and \(\alpha_1, \ldots, \alpha_n \in F \) not all zero such that

\[
\sum_{i=1}^{n} \alpha_i v_i = 0
\]

A set \(V \subseteq X \) is linearly independent if it is not linearly dependent.

Thus \(V \subseteq X \) is linearly independent if and only if

\[
\sum_{i=1}^{n} \alpha_i v_i = 0, \quad v_i \in V \quad \forall i \Rightarrow \alpha_i = 0 \quad \forall i
\]
Bases

Definition 3. A Hamel basis (often just called a basis) of a vector space X is a linearly independent set of vectors in X that spans X.

Example: $\{(1,0),(0,1)\}$ is a basis for \mathbb{R}^2 (this is the standard basis).

$\alpha, \beta \in \mathbb{R}$:

$\alpha (1,0) + \beta (0,1) = (\alpha,\beta)$
Example, cont: \{ (1, 1), (-1, 1) \} is another basis for \(\mathbb{R}^2 \):

Suppose \((x, y) = \alpha (1, 1) + \beta (-1, 1)\) for some \(\alpha, \beta \in \mathbb{R}\)

\[
\begin{align*}
x &= \alpha - \beta \\
y &= \alpha + \beta \\
x + y &= 2\alpha \\
\Rightarrow \alpha &= \frac{x + y}{2} \\
y - x &= 2\beta \\
\Rightarrow \beta &= \frac{y - x}{2}
\end{align*}
\]

\((x, y) = \frac{x + y}{2} (1, 1) + \frac{y - x}{2} (-1, 1)\)

Since \((x, y)\) is an arbitrary element of \(\mathbb{R}^2\), \{ (1, 1), (-1, 1) \} spans \(\mathbb{R}^2\). If \((x, y) = (0, 0)\),

\[
\begin{align*}
\alpha &= \frac{0 + 0}{2} = 0, \\
\beta &= \frac{0 - 0}{2} = 0
\end{align*}
\]
so the coefficients are all zero, so \{(1,1),(-1,1)\} is linearly independent. Since it is linearly independent and spans \(\mathbb{R}^2\), it is a basis.

Example: \{\((1,0,0),(0,1,0)\)\} is not a basis of \(\mathbb{R}^3\), because it does not span \(\mathbb{R}^3\).

Example: \{\((1,0),(0,1),(1,1)\)\} is not a basis for \(\mathbb{R}^2\).

\[
1(1,0) + 1(0,1) + (-1)(1,1) = (0,0)
\]

so the set is not linearly independent.
Bases

Theorem 1 (Thm. 1.2'). *Let V be a Hamel basis for X. Then every vector $x \in X$ has a unique representation as a linear combination of a finite number of elements of V (with all coefficients nonzero).*

Proof. Let $x \in X$. Since V spans X, we can write

$$x = \sum_{s \in S_1} \alpha_s v_s$$

where S_1 is finite, $\alpha_s \in F$, $\alpha_s \neq 0$, and $v_s \in V$ for each $s \in S_1$. Now, suppose

$$x = \sum_{s \in S_1} \alpha_s v_s = \sum_{s \in S_2} \beta_s v_s$$

*The unique representation of 0 is $0 = \sum_{i \in \emptyset} \alpha_i b_i$.}
where S_2 is finite, $\beta_s \in F$, $\beta_s \neq 0$, and $v_s \in V$ for each $s \in S_2$. Let $S = S_1 \cup S_2$, and define

$$\alpha_s = 0 \text{ for } s \in S_2 \setminus S_1$$
$$\beta_s = 0 \text{ for } s \in S_1 \setminus S_2$$

Then

$$0 = x - x$$
$$= \sum_{s \in S_1} \alpha_s v_s - \sum_{s \in S_2} \beta_s v_s$$
$$= \sum_{s \in S} \alpha_s v_s - \sum_{s \in S} \beta_s v_s$$
$$= \sum_{s \in S} (\alpha_s - \beta_s) v_s$$

Since V is linearly independent, we must have $\alpha_s - \beta_s = 0$, so $\alpha_s = \beta_s$, for all $s \in S$.

$$s \in S_1 \iff \alpha_s \neq 0 \iff \beta_s \neq 0 \iff s \in S_2$$
so $S_1 = S_2$ and $\alpha_s = \beta_s$ for $s \in S_1 = S_2$, so the representation is unique. \qed
Bases

Theorem 2. *Every vector space has a Hamel basis.*

Proof. The proof uses the Axiom of Choice. Indeed, the theorem is equivalent to the Axiom of Choice.

□
Bases

A closely related result, from which you can derive the previous result, shows that any linearly independent set V in a vector space X can be extended to a basis of X.

Theorem 3. *If X is a vector space and $V \subseteq X$ is linearly independent, then there exists a linearly independent set $W \subseteq X$ such that*

$$V \subseteq W \subseteq \text{span } W = X$$
Bases

Theorem 4. *Any two Hamel bases of a vector space* \(X \) *have the same cardinality (are numerically equivalent).*

Proof. The proof depends on the so-called Exchange Lemma, whose idea we sketch. Suppose that \(V = \{v_\lambda : \lambda \in \Lambda\} \) and \(W = \{w_\gamma : \gamma \in \Gamma\} \) are Hamel bases of \(X \). Remove one vector \(v_{\lambda_0} \) from \(V \), so that it no longer spans (if it did still span, then \(v_{\lambda_0} \) would be a linear combination of other elements of \(V \), and \(V \) would not be linearly independent). If \(w_\gamma \in \text{span} \left(V \setminus \{v_{\lambda_0}\} \right) \) for every \(\gamma \in \Gamma \), then since \(W \) spans, \(V \setminus \{v_{\lambda_0}\} \) would also span, contradiction. Thus, we can choose \(\gamma_0 \in \Gamma \) such that

\[
w_{\gamma_0} \notin \text{span} \left(V \setminus \{v_{\lambda_0}\} \right)
\]
Because \(w_{\gamma_0} \in \text{span} \ V \), we can write

\[
 w_{\gamma_0} = \sum_{i=0}^{n} \alpha_i v_{\lambda_i}
\]

where \(\alpha_0 \), the coefficient of \(v_{\lambda_0} \), is not zero (if it were, then we would have \(w_{\gamma_0} \in \text{span} \ (V \setminus \{v_{\lambda_0}\}) \)). Since \(\alpha_0 \neq 0 \), we can solve for \(v_{\lambda_0} \) as a linear combination of \(w_{\gamma_0} \) and \(v_{\lambda_1}, \ldots, v_{\lambda_n} \), so

\[
 \text{span} \left(\left(V \setminus \{v_{\lambda_0}\} \right) \cup \{w_{\gamma_0}\} \right) \supseteq \text{span} V = \text{span} \left(V \setminus \{v_{\lambda_0}\} \right) \cup \{v_{\lambda_0}\}
\]

\[
= X
\]

so

\[
\left(\left(V \setminus \{v_{\lambda_0}\} \right) \cup \{w_{\gamma_0}\} \right)
\]

spans \(X \). From the fact that \(w_{\gamma_0} \not\in \text{span} \ (V \setminus \{v_{\lambda_0}\}) \) one can
show that

\[((V \setminus \{v_{\lambda_0}\}) \cup \{w_{\gamma_0}\}) \]

is linearly independent, so it is a basis of \(X \). Repeat this process to exchange every element of \(V \) with an element of \(W \) (when \(V \) is uncountable, this is done by a process called transfinite induction). At the end, we obtain a bijection from \(V \) to \(W \), so that \(V \) and \(W \) are numerically equivalent. \(\square \)
Dimension

Definition 4. The dimension of a vector space X, denoted $\dim X$, is the cardinality of any basis of X.

For $V \subseteq X$, $|V|$ denotes the cardinality of the set V.

- If $\dim X = n$ for some $n \in \mathbb{N}$,
 X is finite-dimensional.

 Otherwise, X is infinite-dimensional.
Dimension

Example: The set of all $m \times n$ real-valued matrices is a vector space over \mathbb{R}. A basis is given by

$$\{E_{ij} : 1 \leq i \leq m, 1 \leq j \leq n\}$$

where

$$\left(E_{ij}\right)_{k\ell} = \begin{cases} 1 & \text{if } k = i \text{ and } \ell = j \\ 0 & \text{otherwise}. \end{cases}$$

The dimension of the vector space of $m \times n$ matrices is mn.

$E_{ij} = \begin{pmatrix} 0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0 \end{pmatrix}$
Theorem 5 (Thm. 1.4). Suppose $\dim X = n \in \mathbb{N}$. If $V \subseteq X$ and $|V| > n$, then V is linearly dependent.

If not, V is linearly independent, so V can be extended to a basis W of X, and

$$V \subseteq W \implies n < |V| \leq |W|$$

contradiction.
Dimension and Dependence

Theorem 6 (Thm. 1.5'). Suppose \(\dim X = n \in \mathbb{N} \), \(V \subseteq X \), and \(|V| = n \).

- If \(V \) is linearly independent, then \(V \) spans \(X \), so \(V \) is a Hamel basis.

- If \(V \) spans \(X \), then \(V \) is linearly independent, so \(V \) is a Hamel basis.

1. Otherwise, extend \(V \) to a basis \(W \) of \(X \), with \(V \neq W \), so \(|W| > |V| = n \), contradiction.
2. Otherwise, choose \(V' \neq V \) a basis for \(X \), and \(|V'| < |V| = n \), contradiction.
Linear Transformations

Definition 5. Let X and Y be two vector spaces over the field F. We say $T : X \rightarrow Y$ is a linear transformation if

$$T(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 T(x_1) + \alpha_2 T(x_2) \quad \forall x_1, x_2 \in X, \alpha_1, \alpha_2 \in F$$

Let $L(X,Y)$ denote the set of all linear transformations from X to Y.

Equivalently:

- $T(\alpha x) = \alpha T(x) \quad \forall \alpha \in F, \forall x \in X$
- $T(x_1 + x_2) = T(x_1) + T(x_2) \quad \forall x_1, x_2 \in X$
Linear Transformations

Theorem 7. \(L(X, Y) \) is a vector space over \(F \).

Proof. First, define linear combinations in \(L(X, Y) \) as follows. For \(T_1, T_2 \in L(X, Y) \) and \(\alpha, \beta \in F \), define \(\alpha T_1 + \beta T_2 \) by

\[
(\alpha T_1 + \beta T_2)(x) = \alpha T_1(x) + \beta T_2(x)
\]

We need to show that \(\alpha T_1 + \beta T_2 \in L(X, Y) \).

\[
(\alpha T_1 + \beta T_2)(\gamma x_1 + \delta x_2) = \gamma (\alpha T_1(x_1) + \beta T_2(x_2)) + \delta (\alpha T_1(x_2) + \beta T_2(x_2))
\]

(definition)

\[
= \gamma (\alpha T_1(x_1) + \beta T_2(x_2)) + \delta (\alpha T_1(x_2) + \beta T_2(x_2))
\]

(T1, T2 linear)

(definition again)

\[
= \gamma (\alpha T_1 + \beta T_2)(x_1) + \delta (\alpha T_1 + \beta T_2)(x_2)
\]

(collect terms)
\[+ : L(X, Y) \times L(X, Y) \to L(X, Y) \]

\[\cdot : \mathbb{F} \times L(X, Y) \to L(X, Y) \]

so \(\alpha T_1 + \beta T_2 \in L(X, Y) \).

The rest of the proof involves straightforward checking of the vector space axioms. \(\square \)
Compositions of Linear Transformations

Given $R \in L(X, Y)$ and $S \in L(Y, Z)$, $S \circ R : X \to Z$. We will show that $S \circ R \in L(X, Z)$, that is, the composition of two linear transformations is linear.

$$(S \circ R)(\alpha x_1 + \beta x_2) = S(R(\alpha x_1 + \beta x_2)) \quad (\text{defn of } S \circ R)$$

$$= S(\alpha R(x_1) + \beta R(x_2)) \quad (R \text{ linear})$$

$$= \alpha S(R(x_1)) + \beta S(R(x_2)) \quad (S \text{ linear})$$

$$= \alpha(S \circ R)(x_1) + \beta(S \circ R)(x_2) \quad (\text{defn of } S \circ R)$$

so $S \circ R \in L(X, Z)$.

Kernel and Rank

Definition 6. Let $T \in L(X, Y)$.

- The image of T is $\text{Im} T = T(X) \subseteq Y$
 - can show $\text{Im} T$ is a vector subspace of Y

- The kernel of T is $\text{ker} T = \{x \in X : T(x) = 0\}$ (null space of T)

- The rank of T is $\text{Rank} T = \dim(\text{Im} T)$

Recall:
- $W \subseteq X$ is a vector subspace if it is a vector space over F under $+ , \cdot$ from X
- $W \subseteq X , W \neq \emptyset$ is a vector subspace if $\forall \alpha , \beta \in F \quad \forall w , w_1 , w_2 \in W \quad (\alpha w_1 + \beta w_2) \in W$
Rank-Nullity Theorem

Theorem 8 (Thms. 2.9, 2.7, 2.6: The Rank-Nullity Theorem). *Let X be a finite-dimensional vector space, \(T \in L(X, Y) \). Then \(\text{Im } T \) and \(\ker T \) are vector subspaces of \(Y \) and \(X \) respectively, and

\[
\dim X = \dim \ker T + \text{Rank } T
\]

nullity of \(T \)

Sketch:

1. Show \(\text{Im } T, \ker T \) are vector subspaces.
2. Take \(\{v_1, \ldots, v_k\} \) a basis for \(\ker T \).
3. Extend to \(\{v_1, \ldots, v_k, w_1, \ldots, w_r\} \) a basis for \(X \).
4. Show \(\{T(w_1), \ldots, T(w_r)\} \) is a basis for \(\text{Im } T \).
Kernel and Rank

Theorem 9 *(Thm. 2.13).* $T \in L(X, Y)$ is one-to-one if and only if $\ker T = \{0\}$.

\[\implies \quad \text{Proof.} \text{ Suppose } T \text{ is one-to-one. Suppose } x \in \ker T. \text{ Then } T(x) = 0. \text{ But since } T \text{ is linear, } T(0) = T(0 \cdot 0) = 0 \cdot T(0) = 0. \text{ Since } T \text{ is one-to-one, } x = 0, \text{ so } \ker T = \{0\}. \]

\[\Leftarrow \quad \text{Conversely, suppose that } \ker T = \{0\}. \text{ Suppose } T(x_1) = T(x_2). \text{ Then} \]

\[
T(x_1 - x_2) = T(x_1) - T(x_2) = 0
\]

which says $x_1 - x_2 \in \ker T$, so $x_1 - x_2 = 0$, so $x_1 = x_2$. Thus, T is one-to-one. \square
Invertible Linear Transformations

Definition 7. $T \in L(X, Y)$ is invertible if there exists a function $S : Y \to X$ such that

\[
S(T(x)) = x \quad \forall x \in X \\
T(S(y)) = y \quad \forall y \in Y
\]

Denote S by T^{-1}.

Note that T is invertible if and only if it is one-to-one and onto. This is just the condition for the existence of an inverse function. The linearity of the inverse follows from the linearity of T.

(we will show this)
Invertible Linear Transformations

Theorem 10 (Thm. 2.11). If $T \in L(X,Y)$ is invertible, then $T^{-1} \in L(Y,X)$, i.e. T^{-1} is linear.

Proof. Suppose $\alpha, \beta \in F$ and $v, w \in Y$. Since T is invertible, there exist unique $v', w' \in X$ such that

\[
T(v') = v \quad T^{-1}(v) = v' \\
T(w') = w \quad T^{-1}(w) = w'.
\]

Then

\[
T^{-1}(\alpha v + \beta w) = T^{-1}(\alpha T(v') + \beta T(w')) \quad \text{(definition)} \\
= T^{-1}(T(\alpha v' + \beta w')) \quad \text{(T linear)} \\
= \alpha v' + \beta w' \quad \text{(defn of T^{-1})} \\
= \alpha T^{-1}(v) + \beta T^{-1}(w) \quad \text{(defn of v', w')}
\]
so $T^{-1} \in L(Y, X)$. \hfill \Box
Linear Transformations and Bases

Theorem 11 (Thm. 3.2). Let X and Y be two vector spaces over the same field F, and let $V = \{v_\lambda : \lambda \in \Lambda\}$ be a basis for X. Then a linear transformation $T \in L(X,Y)$ is completely determined by its values on V, that is:

1. Given any set $\{y_\lambda : \lambda \in \Lambda\} \subseteq Y$, $\exists T \in L(X,Y)$ s.t.
 \[T(v_\lambda) = y_\lambda \quad \forall \lambda \in \Lambda \]

2. If $S, T \in L(X,Y)$ and $S(v_\lambda) = T(v_\lambda)$ for all $\lambda \in \Lambda$, then $S = T$.
Proof. 1. If \(x \in X \), \(x \) has a unique representation of the form

\[
x = \sum_{i=1}^{n} \alpha_{i}v_{\lambda_{i}} \quad \alpha_{i} \neq 0 \quad i = 1, \ldots, n
\]

(Recall that if \(x = 0 \), then \(n = 0 \).) Define

\[
T(x) = \sum_{i=1}^{n} \alpha_{i}y_{\lambda_{i}} \quad \text{(so } T(v_{\lambda}) = y_{\lambda} \text{ for all } \lambda \text{ by defn)}
\]

Then \(T(x) \in Y \). The verification that \(T \) is linear is left as an exercise.
2. Suppose $S(v_\lambda) = T(v_\lambda)$ for all $\lambda \in \Lambda$. Given $x \in X$,

\[
S(x) = S\left(\sum_{i=1}^{n} \alpha_i v_{\lambda_i} \right) \\
= \sum_{i=1}^{n} \alpha_i S(v_{\lambda_i}) \quad \text{(S linear)} \\
= \sum_{i=1}^{n} \alpha_i T(v_{\lambda_i}) \quad \text{(S and T agree on \{v_\lambda : \lambda \in \Lambda\})} \\
= T\left(\sum_{i=1}^{n} \alpha_i v_{\lambda_i} \right) \quad \text{(T linear)} \\
= T(x)
\]

so $S = T$. \qed
Isomorphisms

Definition 8. Two vector spaces X and Y over a field F are isomorphic if there is an invertible $T \in L(X,Y)$.

$T \in L(X,Y)$ is an isomorphism if it is invertible (one-to-one and onto).

Isomorphic vector spaces are essentially indistinguishable as vector spaces.
Isomorphisms

Theorem 12 (Thm. 3.3). *Two vector spaces X and Y over the same field are isomorphic if and only if $\dim X = \dim Y$.***

\Rightarrow : *Proof*. Suppose X and Y are isomorphic, and let $T \in L(X, Y)$ be an isomorphism. Let

$$U = \{u_\lambda : \lambda \in \Lambda\}$$

be a basis of X, and let $v_\lambda = T(u_\lambda)$ for each $\lambda \in \Lambda$. Set

$$V = \{v_\lambda : \lambda \in \Lambda\}$$

Since T is one-to-one, U and V have the same cardinality. If $U = \{u_\lambda : \lambda \in \Lambda\}$,
\(y \in Y \), then there exists \(x \in X \) such that

\[
y = T(x)
\]

\[
y = T \left(\sum_{i=1}^{n} \alpha \lambda_i u \lambda_i \right)
\]

\[
y = \sum_{i=1}^{n} \alpha \lambda_i T(u \lambda_i)
\]

\[
y = \sum_{i=1}^{n} \alpha \lambda_i v \lambda_i
\]

(T is onto)

(linearity of \(T \))

(defn of \(v \lambda_i \))

which shows that \(V \) spans \(Y \). To see that \(V \) is linearly indepen-
dent, suppose

\[
0 = \sum_{i=1}^{m} \beta_i v \lambda_i \\
= \sum_{i=1}^{m} \beta_i T(\lambda_i) \\
= T \left(\sum_{i=1}^{m} \beta_i \lambda_i \right) \quad \text{(def of } v \lambda_i)
\]

Since \(T \) is one-to-one, \(\ker T = \{0\} \), so

\[
\sum_{i=1}^{m} \beta_i u \lambda_i = 0
\]

Since \(U \) is a basis, we have \(\beta_1 = \cdots = \beta_m = 0 \), so \(V \) is linearly independent. Thus, \(V \) is a basis of \(Y \); since \(U \) and \(V \) are numerically equivalent, \(\dim X = \dim Y \).

\[|U| = |V| \]
Now suppose \(\dim X = \dim Y \). Let

\[
U = \{u_\lambda : \lambda \in \Lambda\} \quad \text{and} \quad V = \{v_\lambda : \lambda \in \Lambda\}
\]

be bases of \(X \) and \(Y \); note we can use the same index set \(\Lambda \) for both because \(\dim X = \dim Y \). By Theorem 3.2, there is a unique previous result
$T \in L(X, Y)$ such that $T(u_{\lambda}) = v_{\lambda}$ for all $\lambda \in \Lambda$. If $T(x) = 0$, then

\[\Rightarrow \alpha_1 = \cdots = \alpha_n = 0 \text{ since } V \text{ is a basis} \]

\[\Rightarrow x = 0 = \sum_{i=1}^{n} \alpha_i u_{\lambda_i} \]

\[\Rightarrow \ker T = \{0\} \]

\[\Rightarrow T \text{ is one-to-one} \]
If \(y \in Y \), write \(y = \sum_{i=1}^{m} \beta_i v_{\lambda_i} \). Let

\[
x = \sum_{i=1}^{m} \beta_i u_{\lambda_i}
\]

Then

\[
T(x) = T \left(\sum_{i=1}^{m} \beta_i u_{\lambda_i} \right)
\]

\[
= \sum_{i=1}^{m} \beta_i T(u_{\lambda_i}) \quad \text{(} T \text{ linear)}
\]

\[
= \sum_{i=1}^{m} \beta_i v_{\lambda_i}
\]

\[
= \sum_{i=1}^{m} \beta_i v_{\lambda_i} = y
\]

so \(T \) is onto, so \(T \) is an isomorphism and \(X, Y \) are isomorphic. \(\square \)
\[f(x) = \begin{cases} \frac{1}{x} & x \in (0, \infty) \\ 0 & x = 0 \end{cases} \]

\[\lim_{x \to 0} f(x) = \infty \]

\[J(f) = \int_0^1 e^{-x} \frac{f(x)}{1 + f'(x)^2} \, dx \]

\[J(f) - J(g) \leq \int_0^1 \left| e^{-x} \left(\frac{f(x) (1 + g'(x)^2)}{(1 + f'(x)^2)(1 + g'(x)^2)} - g(x) \right) \right| \, dx \]
\[\leq \int_0^1 e^{-x} \left| f(x)(1 + g'(x^2)) - g(x)(1 + f'(x)^2) \right| \, dx \]
\[\leq \int_0^1 e^{-x} \left| f(x) - g(x) + (f(x)g'(x)^2 - g(x)f'(x))^2 \right| \, dx \]
\[p(x, A) = 0 \Rightarrow x \in \bar{A} \]

\[p(x, A) = \inf_{a \in A} d(x, a) \]

\[\forall n \exists a_n \in A \text{ s.t.} \]
\[0 \leq d(x, a_n) \leq \frac{1}{n} \]
\[\Rightarrow a_n \to x \]
\[\exists a_n \in A \Rightarrow x \in \bar{A} \]

\[\bar{A} = A \cup \text{limit points of } A \]
\[x \in \bar{A} \Rightarrow d(x, A) = 0 \]
$y \subseteq A \cup B$, $\forall x \in A \Rightarrow y \cap B = \emptyset$

$\neg y \in [x]$

$[x] \cap y \neq \emptyset$

$\neg y \notin [x]$

$U[x]$ vs. $[y]$

$\exists \varepsilon > 0$ s.t. $B_{\varepsilon}(y) \cap [x] = \emptyset$

$[x]$ open

$\neg \exists x \in O_x \wedge x \in O_x$ s.t. $O_x \subseteq [x]$

$\exists \varepsilon > 0$ s.t. $B_{\varepsilon}(x) \subseteq O_x$

$\forall z \in [x] \Rightarrow [z] = [x]$

$\exists x \in O_Z \wedge z \in O_Z$ s.t. $O_Z \subseteq [x] = [z]$
Suppose \(\exists x, y \text{ s.t. } y \notin [x] \)

\[
y = X = \bigcup_{x \in X} [x] = \left(\bigcup_{x \neq y} [x] \right) \cup [y]
\]

\[
[y] \cap \left(\bigcup_{x \notin [y]} [x] \right) = \emptyset
\]