Economics 204 Summer/Fall 2020

Lecture 1-Monday July 27, 2020

Section 1.2. Methods of Proof

We begin by looking at the notion of proof. What is a proof? "Proof" has a formal definition in mathematical logic, and a formal proof is long and unreadable. In practice, you need to learn to recognize a proof when you see one.

We will begin by discussing four main methods of proof that you will encounter frequently:

- deduction
- contraposition
- induction
- contradiction

We look at each in turn.

Proof by Deduction:

A proof by deduction is composed of a list of statements, the last of which is the statement to be proven. Each statement in the list is either

- an axiom: a fundamental assumption about mathematics, or part of definition of the object under study; or
- a previously established theorem; or
- follows from previous statements in the list by a valid rule of inference

Example: Prove that the function $f(x)=x^{2}$ is continuous at $x=5$.
Recall from one-variable calculus that $f(x)=x^{2}$ is continuous at $x=5$ means

$$
\forall \varepsilon>0 \exists \delta>0 \text { s.t. }|x-5|<\delta \Rightarrow|f(x)-f(5)|<\varepsilon
$$

That is, "for every $\varepsilon>0$ there exists a $\delta>0$ such that whenever x is within δ of $5, f(x)$ is within ε of $f(5)$."

To prove the claim, we must systematically verify that this definition is satisfied.
Proof: Let $\varepsilon>0$ be given. Let

$$
\delta=\min \left\{1, \frac{\varepsilon}{11}\right\}>0
$$

Why??

Suppose $|x-5|<\delta$. Since $\delta \leq 1,4<x<6$, so $9<x+5<11$ and $|x+5|<11$. Then

$$
\begin{aligned}
|f(x)-f(5)| & =\left|x^{2}-25\right| \\
& =|(x+5)(x-5)| \\
& =|x+5||x-5| \\
& <11 \cdot \delta \\
& \leq 11 \cdot \frac{\varepsilon}{11} \\
& =\varepsilon
\end{aligned}
$$

Thus, we have shown that for every $\varepsilon>0$, there exists $\delta>0$ such that $|x-5|<\delta \Rightarrow$ $|f(x)-f(5)|<\varepsilon$, so $f(x)=x^{2}$ is continuous at $x=5$.

Proof by Contraposition:

First recall some basics of logic.
$\neg P$ means " P is false."
$P \wedge Q$ means " P is true and Q is true."
$P \vee Q$ means " P is true or Q is true (or possibly both)."
$\neg P \wedge Q$ means $(\neg P) \wedge Q ; \neg P \vee Q$ means $(\neg P) \vee Q$.
$P \Rightarrow Q$ means "whenever P is satisfied, Q is also satisfied."
Formally, $P \Rightarrow Q$ is equivalent to $\neg P \vee Q$.
The contrapositive of the statement $P \Rightarrow Q$ is the statement

$$
\neg Q \Rightarrow \neg P
$$

These are logically equivalent, as we prove below.

Theorem $1 P \Rightarrow Q$ is true if and only if $\neg Q \Rightarrow \neg P$ is true.

Proof: Suppose $P \Rightarrow Q$ is true. Then either P is false, or Q is true (or possibly both). Therefore, either $\neg P$ is true, or $\neg Q$ is false (or possibly both), so $\neg(\neg Q) \vee(\neg P)$ is true, $\neg Q \Rightarrow \neg P$ is true.

Conversely, suppose $\neg Q \Rightarrow \neg P$ is true. Then either $\neg Q$ is false, or $\neg P$ is true (or possibly both), so either Q is true, or P is false (or possibly both), so $\neg P \vee Q$ is true, so $P \Rightarrow Q$ is true.

So to prove a statement $P \Rightarrow Q$, it is equivalent to prove the contrapositive $\neg Q \Rightarrow \neg P$. See de la Fuente for an example of the use of proof by contraposition.

Proof by Induction:

We illustrate with an example.

Theorem 2 For every $n \in \mathbf{N}_{0}=\{0,1,2,3, \ldots\}$,

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}
$$

i.e. $1+2+\cdots+n=\frac{n(n+1)}{2}$.

Proof:

Base step $n=0$: The left hand side (LHS) above $=\sum_{k=1}^{0} k=$ the empty sum $=0$. The right hand side $($ RHS $)=\frac{0 \cdot 1}{2}=0$ so the claim is true for $n=0$.

Induction step: Suppose

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} \text { for some } n \geq 0
$$

We must show that

$$
\begin{aligned}
& \quad \sum_{k=1}^{n+1} k=\frac{(n+1)((n+1)+1)}{2} \\
\text { LHS } & =\sum_{k=1}^{n+1} k \\
= & \sum_{k=1}^{n} k+(n+1) \\
= & \frac{n(n+1)}{2}+(n+1) \text { by the Induction hypothesis } \\
= & (n+1)\left(\frac{n}{2}+1\right) \\
& =\frac{(n+1)(n+2)}{2} \\
\text { RHS } & =\frac{(n+1)((n+1)+1)}{2} \\
& =\frac{(n+1)(n+2)}{2} \\
& =\text { LHS }
\end{aligned}
$$

so by mathematical induction, $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ for all $n \in \mathbf{N}_{0}$.

Proof by Contradiction:

A proof by contradiction proves a statement by assuming its negation is true and working until reaching a contradiction. Again we illustrate with an example.

Theorem 3 There is no rational number q such that $q^{2}=2$.

Proof: Suppose $q^{2}=2, q \in \mathbf{Q}$. We can write $q=\frac{m}{n}$ for some integers $m, n \in \mathbf{Z}$. Moreover, we can assume that m and n have no common factor; if they did, we could divide it out. ${ }^{1}$

$$
2=q^{2}=\frac{m^{2}}{n^{2}}
$$

Therefore, $m^{2}=2 n^{2}$, so m^{2} is even.
We claim that m is even. If not^{2}, then m is odd, so $m=2 p+1$ for some $p \in \mathbf{Z}$. Then

$$
\begin{aligned}
m^{2} & =(2 p+1)^{2} \\
& =4 p^{2}+4 p+1 \\
& =2\left(2 p^{2}+2 p\right)+1
\end{aligned}
$$

which is odd, contradiction. Therefore, m is even, so $m=2 r$ for some $r \in \mathbf{Z}$.

$$
\begin{aligned}
4 r^{2} & =(2 r)^{2} \\
& =m^{2} \\
& =2 n^{2} \\
n^{2} & =2 r^{2}
\end{aligned}
$$

so n^{2} is even, which implies (by the argument given above) that n is even. Therefore, $n=2 s$ for some $s \in \mathbf{Z}$, so m and n have a common factor, namely 2 , contradiction. Therefore, there is no rational number q such that $q^{2}=2$.

Section 1.3 Equivalence Relations

Definition 4 A binary relation R from X to Y is a subset $R \subseteq X \times Y$. We write $x R y$ if $(x, y) \in R$ and "not $x R y$ " if $(x, y) \notin R . R \subseteq X \times X$ is a binary relation on X.

Example: Suppose $f: X \rightarrow Y$ is a function from X to Y. The binary relation $R \subseteq X \times Y$ defined by

$$
x R y \Longleftrightarrow f(x)=y
$$

[^0]is exactly the graph of the function f. A function can be considered a binary relation R from X to Y such that for each $x \in X$ there exists exactly one $y \in Y$ such that $(x, y) \in R$.

Example: Suppose $X=\{1,2,3\}$ and R is the binary relation on X given by $R=$ $\{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)\}$. This is the binary relation "is weakly greater than," or \geq.

Definition 5 A binary relation R on X is
(i) reflexive if $\forall x \in X, x R x$
(ii) symmetric if $\forall x, y \in X, x R y \Leftrightarrow y R x$
(iii) transitive if $\forall x, y, z \in X,(x R y \wedge y R z) \Rightarrow x R z$

Definition 6 A binary relation R on X is an equivalence relation if it is reflexive, symmetric and transitive.

Definition 7 Given an equivalence relation R on X, write

$$
[x]=\{y \in X: x R y\}
$$

$[x]$ is called the equivalence class containing x.
The set of equivalence classes is the quotient of X with respect to R, denoted X / R.

Example: The binary relation \geq on \mathbf{R} is not an equivalence relation because it is not symmetric.

Example: Let $X=\{a, b, c, d\}$ and $R=\{(a, a),(a, b),(b, a),(b, b),(c, c),(c, d),(d, c),(d, d)\}$. R is an equivalence relation (why?) and the equivalence classes of R are $\{a, b\}$ and $\{c, d\}$. $X / R=\{\{a, b\},\{c, d\}\}$

The following theorem shows that the equivalence classes of an equivalence relation form a partition of X : every element of X belongs to exactly one equivalence class.

Theorem 8 Let R be an equivalence relation on X. Then $\forall x \in X, x \in[x]$.
Given $x, y \in X$, either $[x]=[y]$ or $[x] \cap[y]=\emptyset$.

Proof: If $x \in X$, then $x R x$ because R is reflexive, so $x \in[x]$.
Suppose $x, y \in X$. If $[x] \cap[y]=\emptyset$, we're done. So suppose $[x] \cap[y] \neq \emptyset$. We must show that $[x]=[y]$, i.e. that the elements of $[x]$ are exactly the same as the elements of $[y]$.

Choose $z \in[x] \cap[y]$. Then $z \in[x]$, so $x R z$. By symmetry, $z R x$. Also $z \in[y]$, so $y R z$. By symmetry again, $z R y$. Now choose $w \in[x]$. By definition, $x R w$. Since $z R x$ and R is transitive, $z R w$. By symmetry, $w R z$. Since $z R y, w R y$ by transitivity again. By symmetry, $y R w$, so $w \in[y]$, which shows that $[x] \subseteq[y]$. Similarly, $[y] \subseteq[x]$, so $[x]=[y]$.

Section 1.4 Cardinality

Definition 9 Two sets A, B are numerically equivalent (or have the same cardinality) if there is a bijection $f: A \rightarrow B$, that is, a function $f: A \rightarrow B$ that is 1-1 $\left(a \neq a^{\prime} \Rightarrow f(a) \neq f\left(a^{\prime}\right)\right)$, and onto ($\forall b \in B \exists a \in A$ s.t. $f(a)=b$).

Roughly speaking, if two sets have the same cardinality then elements of the sets can be uniquely matched up and paired off.

A set is either finite or infinite. A set is finite if it is numerically equivalent to $\{1, \ldots, n\}$ for some n. A set that is not finite is infinite.

For example, the set $A=\{2,4,6, \ldots, 50\}$ is numerically equivalent to the set $\{1,2, \ldots, 25\}$ under the function $f(n)=2 n$. In particular, this shows that A is finite. The set $B=$ $\{1,4,9,16,25,36,49 \ldots\}=\left\{n^{2}: n \in \mathbf{N}\right\}$ is numerically equivalent to \mathbf{N} and is infinite.

An infinite set is either countable or uncountable. A set is countable if it is numerically equivalent to the set of natural numbers $\mathbf{N}=\{1,2,3, \ldots\}$. An infinite set that is not countable is called uncountable.

Example: The set of integers \mathbf{Z} is countable.

$$
\mathbf{Z}=\{0,1,-1,2,-2, \ldots\}
$$

Define $f: \mathbf{N} \rightarrow \mathbf{Z}$ by

$$
\begin{aligned}
f(1) & =0 \\
f(2) & =1 \\
f(3) & =-1 \\
& \vdots \\
f(n) & =(-1)^{n}\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

where $\lfloor x\rfloor$ is the greatest integer less than or equal to x. It is straightforward to verify that f is one-to-one and onto.

Notice $\mathbf{Z} \supset \mathbf{N}$ but $\mathbf{Z} \neq \mathbf{N}$; indeed, $\mathbf{Z} \backslash \mathbf{N}$ is infinite! So statements like "One half of the elements of \mathbf{Z} are in \mathbf{N} " are not meaningful.

Theorem 10 The set of rational numbers \mathbf{Q} is countable.
"Picture Proof":

$$
\begin{aligned}
\mathbf{Q} & =\left\{\frac{m}{n}: m, n \in \mathbf{Z}, n \neq 0\right\} \\
& =\left\{\frac{m}{n}: m \in \mathbf{Z}, n \in \mathbf{N}\right\}
\end{aligned}
$$

		0		1		m		-1	

Go back and forth on upward-sloping diagonals, omitting the repeats:

$$
\begin{aligned}
f(1) & =0 \\
f(2) & =1 \\
f(3) & =\frac{1}{2} \\
f(4) & =-1
\end{aligned}
$$

$f: \mathbf{N} \rightarrow \mathbf{Q}, f$ is one-to-one and onto.
Notice that although \mathbf{Q} appears to be much larger than \mathbf{N}, in fact they are the same size.

[^0]: ${ }^{1}$ This is actually a subtle point. We are using the fact that the expression of a natural number as a product of primes is unique.
 ${ }^{2}$ This is a proof by contradiction within a proof by contradiction!

