Econ 204 - Problem Set 1

Due July 31^{1}

1. Use induction to prove the following:
(a) $2^{2 n}-1$ is divisible by 3 for all $n \in \mathbb{N}$.
(b) $1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}} \leq 2 \sqrt{n}$
2. Define the infinite cartesian product of a set X with itself as $X^{\omega}:=\prod_{i \in \mathbb{N}} X$. Prove by contradiction that for $X=\{0,1\}, X^{\omega}$ is uncountable. (Hint: suppose there exists a surjective map $f: \mathbb{N} \rightarrow X^{\omega}$, and find an element in X^{ω} which is not in the image of f).
3. In the following examples, show that the sets A and B are numerically equivalent by finding a specific bijection between the two.
(a) $A=[0,1], B=[10,20]$
(b) $A=[0,1], B=[0,1)$
(c) $A=(-1,1), B=\mathbb{R}$
4. (Dynkins's $\pi-\lambda$ system Theorem): The goal of this exercise is to prove this theorem, and review/practice some of the set theoretical results.
Suppose Ω is some arbitrary set (which need not have any topological or algebraic structure). Then, $\mathscr{F} \subset 2^{\Omega}$ as a collection of subsets of Ω is called a σ-algebra if it satisfies following properties:

- $\emptyset \in \mathscr{F}$.
- For every $A \subset \Omega$ where $A \in \mathscr{F}, A^{c} \in \mathscr{F}$ (A^{c} refers to the complement of set A, i.e $\Omega \backslash A$).
- For every countable sequence of subsets $\left\{A_{n}\right\}$ where $A_{n} \in \mathscr{F}$ for all $n, \bigcup_{n} A_{n} \in \mathscr{F}$.
(a) Show that $\Omega \in \mathscr{F}$.
(b) Prove that \mathscr{F} is closed under countable intersection.

Two more definitions: first, $\Lambda \subset 2^{\Omega}$ is called a λ-system if:

- $\Omega \in \Lambda$.
- If $A, B \in \Lambda$ and $A \subset B$, then $B \backslash A \in \Lambda$.
- If $\left\{A_{n}\right\}$ is an increasing sequence of subsets, i.e $A_{1} \subset A_{2} \subset \ldots$, with each element being in Λ, then $\bigcup_{n} A_{n} \in \Lambda$.

Second, $\Pi \subset 2^{\Omega}$ is called a π-system, if it is closed under finite intersection. Now assume Π is a π-system such that $\Pi \subset \Lambda$, where Λ is a λ-system. The Dynkin's theorem which we want to prove states that the smallest σ-algebra containing Π (denoted by $\sigma(\Pi)$) is a subset of Λ. Try to keep on with each step below until the final result drops out:

[^0](c) Let $\lambda(\Pi)$ be the smallest ${ }^{2} \lambda$-system containing Π. Explain why $\lambda(\Pi) \subset \Lambda$. (Hint: note that $\Pi \subset \Lambda$).
(d) Let $B \in \Pi$ and define $\mathcal{A}_{B}:=\{A \subset \Omega: A \cap B \in \lambda(\Pi)\}$. Show that \mathcal{A}_{B} is itself a λ-system and contains $\lambda(\Pi)$, i.e $\lambda(\Pi) \subset \mathcal{A}_{B}$.
(e) Now let $A \in \lambda(\Pi)$, and define $\mathcal{B}_{A}:=\{B \subset \Omega: A \cap B \in \lambda(\Pi)\}$. Again, show that \mathcal{B}_{A} is a λ-system containing $\lambda(\Pi)$.
(f) Use the previous two steps to show $\lambda(\Pi)$ is also a π-system.
(g) Given that we have seen so far that $\lambda(\Pi)$ is both a π-system and a λ-system, deduce that it has to be a σ-algebra.
(h) Conclude that $\sigma(\Pi) \subset \Lambda$.
5. Let \mathcal{U} and \mathcal{Z} be two sets, and $P: \mathcal{U} \times \mathcal{Z} \rightarrow \mathbb{R}$ be a bounded function. Define the upper and lower value functions as:
\[

$$
\begin{align*}
V_{+} & =\inf _{u \in \mathcal{U}} \sup _{z \in \mathcal{Z}} P(u, z) \tag{1}\\
V_{-} & =\sup _{z \in \mathcal{Z}} \inf _{u \in \mathcal{U}} P(u, z)
\end{align*}
$$
\]

(a) Show that $V_{+} \geq V_{-}$.
(b) Call any function $\beta: \mathcal{U} \rightarrow \mathcal{Z}$ a strategy for the maximizing side. Denote the space of all such strategies as \mathscr{B}. Prove the following identity, and explain why it is not in contrast with part (a).

$$
\begin{equation*}
V_{+}=\inf _{u \in \mathcal{U}} \sup _{\beta \in \mathscr{B}} P(u, \beta(u))=\sup _{\beta \in \mathscr{B}} \inf _{u \in \mathcal{U}} P(u, \beta(u)) \tag{2}
\end{equation*}
$$

6. Let $f:[a, b] \rightarrow \mathbb{R}$. The set $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is called a partition for $[a, b]$, if $a=x_{0}<x_{1}<$ $\ldots<x_{n}=b$. Define $V(f ; P):=\sum_{j=1}^{n}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|$. The variation of f on $[a, b]$ is defined as

$$
\begin{equation*}
V(f ;[a, b]):=\sup \{V(f ; P): P \text { is a partition for }[a, b]\} . \tag{3}
\end{equation*}
$$

When $V(f ;[a, b])$ is finite, we say that f is of bounded variation on $[a, b]$.
(a) Show that the class of functions of bounded variation on $[a, b]$ is closed under addition. That is if f and g have bounded variation on $[a, b]$, then $f+g$ also has bounded variation on $[a, b]$.
(b) Show that if f is of bounded variation on $[a, b]$ and $a \leq c \leq b$, then

$$
\begin{equation*}
V(f ;[a, b])=V(f ;[a, c])+V(f ;[c, b]) \tag{4}
\end{equation*}
$$

[^1]
[^0]: ${ }^{1}$ In case of any problems with the exercises please email farzad@berkeley.edu

[^1]: ${ }^{2}$ By smallest we mean: $\lambda(\Pi)=\bigcap_{\left\{\Lambda_{\alpha} \text { is } \lambda \text {-system in } 2^{\Omega}: \Pi \subset \Lambda_{\alpha}\right\}} \Lambda_{\alpha}$

