Econ 204 - Problem Set $5{ }^{1}$

Due Friday August 14, 2020

1. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable for each $n \in \mathbb{N}$ with $\left|f_{n}^{\prime}(x)\right| \leq 1$ for all n and x. Assume,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{n}(x)=g(x) \tag{1}
\end{equation*}
$$

for all x. Prove that $g: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz-continuous.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{2} (twice continuously differentiable) function. The function and its second derivative are bounded, namely there exist $M, N>0$ such that $\sup _{x \in \mathbb{R}}|f(x)| \leq M$ and $\sup _{x \in \mathbb{R}}\left|f^{\prime \prime}(x)\right| \leq N$. Show that $\sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right| \leq 2 \sqrt{M N}$.
3. The oscillation of an arbitrary function $f:[a, b] \rightarrow \mathbb{R}$ at $x \in[a, b]$ is ${ }^{2}$

$$
\begin{equation*}
\operatorname{osc}_{x} f:=\lim _{r \downarrow 0} \operatorname{diam}(f([x-r, x+r])) \tag{2}
\end{equation*}
$$

where for every $x_{1}, x_{2} \in[a, b], f\left(\left[x_{1}, x_{2}\right]\right):=\left\{y: y=f(x)\right.$ for some $\left.x \in\left[x_{1}, x_{2}\right]\right\}$. For $k>0$, let D_{k} be the set of points with oscillation greater than or equal to k, i.e $D_{k}:=\left\{x \in[a, b]: \operatorname{osc}_{x} f \geq k\right\}$. Prove that D_{k} is closed. ${ }^{3}$
4. The goal of this exercise is to verify the Banach-Steinhaus theorem. Let $\left\{T_{n}\right\}$ be a sequence of bounded linear functions $T_{n}: X \rightarrow Y$ from a Banach (complete normed vector) space X into a normed vector space Y, such that $\left\{T_{n}(x)\right\}$ is bounded for every $x \in X$, that is for all $x \in X$ there exists $c_{x} \in \mathbb{R}_{+}$such that:

$$
\begin{equation*}
\left\|T_{n}(x)\right\| \leq c_{x} \quad \forall n \in \mathbb{N} \tag{3}
\end{equation*}
$$

Then, we want to show that the sequence of norms $\left\{\left\|T_{n}\right\|\right\}$ is bounded, that is there exists $c>0$ such that $\left\|T_{n}\right\| \leq c$ for all $n \in \mathbb{N}$.
(a) For every $k \in \mathbb{N}$ let $A_{k} \subseteq X$ be the set of all $x \in X$ such that $\left\|T_{n}(x)\right\| \leq k$ for all n. Show that A_{k} is closed under the X-norm.
(b) Use equation (3) to show that $X=\bigcup_{k \in \mathbb{N}} A_{k}$.
(c) The Baire's theorem states that in this case since X is complete, there exists some $A_{k_{0}}$ that contains an open ball, say $B_{\varepsilon}\left(x_{0}\right) \subseteq A_{k_{0}}$. Take this result as given, and prove there exists some constant $c>0$ such that

$$
\begin{equation*}
\left\|T_{n}\right\| \leq c \quad \forall n \in \mathbb{N} \tag{4}
\end{equation*}
$$

[^0]Hint: For every nonzero $x \in X$ there exists $\gamma>0$ such that $x=\frac{1}{\gamma}\left(z-x_{0}\right)$, where $x_{0}, z \in B_{\varepsilon}\left(x_{0}\right)$ and $\gamma>0$.
5. Suppose $\Psi: X \rightarrow 2^{X}$ is a non-empty and compact-valued upper-hemicontinuous correspondence. The metric space X is compact. Show that there exists a non-empty compact set $C \subset X$ such that $\Psi(C)=C$ (you can use the exercises that are proved in the sections).

[^0]: ${ }^{1}$ In case of any problems with the exercises please email farzad@berkeley.edu
 ${ }^{2}$ The symbol ' \downarrow ' means that r decreases to 0 along the limit.
 ${ }^{3}$ This question is part of the exercise 19 in chapter 3 of the second edition of Real Mathematical Analysis, Charles Chapman Pugh.

