Economics 204 Summer/Fall 2020
 Final Exam - Suggested Solutions

Answer all of the questions below. Be as complete, correct, and concise as possible. There are 7 questions for a total of 180 points possible; point values for each problem are in parentheses. For questions with subparts, each subpart is worth the same number of points. Use the points as a guide to allocating your time.

1. (15) Let A and B be $n \times n$ matrices that are similar, so there exists an invertible $n \times n$ matrix P such that $A=P^{-1} B P$. Show that for every $k \in \mathbb{N}, A^{k}=P^{-1} B^{k} P$ (where M^{k} is the product of k copies of the $n \times n$ matrix M).
(Hint: use induction.)
Solution: For the base case $k=1$, the claim follows by definition: $A=P^{-1} B P$. For the induction hypothesis, assume that the claim is true for some $k \geq 1$, so $A^{k}=$ $P^{-1} B^{k} P$. Then for $k+1$,

$$
A^{k+1}=A^{k} A=\left(P^{-1} B^{k} P\right)\left(P^{-1} B P\right)
$$

using the induction hypothesis and similarity of A and B. Thus

$$
\begin{aligned}
A^{k+1}=A^{k} A & =\left(P^{-1} B^{k} P\right)\left(P^{-1} B P\right) \\
& =P^{-1} B^{k}\left(P P^{-1}\right) B P \\
& =P^{-1} B^{k} I B P \\
& =P^{-1} B^{k} B P \\
& =P^{-1} B^{k+1} P
\end{aligned}
$$

(Here I is the $n \times n$ identity matrix.) Thus the claim is true for $k+1$. Thus by induction, $A^{k}=P^{-1} B^{k} P$ for every $k \in \mathbb{N}$.
2. (15) Let (X, d) and (Y, ρ) be metric spaces and $f, g: X \rightarrow Y$ be continuous functions. Let $E \subseteq X$ be a dense subset of X, that is, a set such that $\bar{E}=X$. Show that if $f(z)=g(z)$ for all $z \in E$, then $f=g$, that is, $f(x)=g(x)$ for all $x \in X$.
Solution: Let $x \in X$. Since $\bar{E}=X$, there is a sequence $\left\{x_{n}\right\} \subseteq E$ such that $x_{n} \rightarrow x$. Since f and g are continuous at $x, f\left(x_{n}\right) \rightarrow f(x)$ and $g\left(x_{n}\right) \rightarrow g(x)$. Since $x_{n} \in E$ for every $n, f\left(x_{n}\right)=g\left(x_{n}\right)$ for every n. Thus

$$
f(x)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} g\left(x_{n}\right)=g(x)
$$

Thus $f(x)=g(x)$. Since $x \in X$ was arbitrary, $f(x)=g(x)$ for all $x \in X$.
3. (30) Let X and Y be vector spaces over the same field F, and let $T: X \rightarrow Y$ be a linear transformation. Suppose $W \subseteq X$ is a subset of X that spans X, and $T(W) \subseteq Y$ is linearly independent.
(a.) Show that T is one-to-one.

Solution: Suppose $x \in X$ and $T(x)=0$. Since W spans X, there exist $\alpha_{1}, \ldots, \alpha_{n} \in F$ and $w_{1}, \ldots, w_{n} \in W$ such that $x=\sum_{i=1}^{n} \alpha_{i} w_{i}$. Then

$$
\begin{aligned}
0=T(x) & =T\left(\sum_{i=1}^{n} \alpha_{i} w_{i}\right) \\
& =\sum_{i=1}^{n} \alpha_{i} T\left(w_{i}\right) \quad(\text { using linearity of } T)
\end{aligned}
$$

But $T(W)$ is a linearly independent subset of Y, so this implies $\alpha_{i}=0$ for each $i=1, \ldots, n$. So $x=\sum_{i=1}^{n} \alpha_{i} w_{i}=0$. Thus $\operatorname{ker} T=\{0\}$. Since T is a linear transformation, this implies T is one-to-one.
(b.) Show that W is a basis for X.

Solution: Since W spans X by assumption, it suffices to show that W is linearly independent. To that end, suppose $\sum_{i=1}^{n} \alpha_{i} w_{i}=0$ for some $\alpha_{1}, \ldots, \alpha_{n} \in F$ and $w_{1}, \ldots, w_{n} \in W$. Then since T is a linear transformation, $T(0)=0$. Thus

$$
0=T(0)=T\left(\sum_{i=1}^{n} \alpha_{i} w_{i}\right)=\sum_{i=1}^{n} \alpha_{i} T\left(w_{i}\right)
$$

using the linearity of T. But $T(W)$ is a linearly independent subset of Y, so this implies $\alpha_{i}=0$ for each $i=1, \ldots, n$. Thus W is linearly independent. Since W spans X by assumption, W is a basis for X.
4. (30) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable functions. Suppose that $f(0)=g(0)$ and $f^{\prime}(x) \leq g^{\prime}(x)$ for all $x \in \mathbb{R}$. Show that $f(x) \leq g(x)$ for all $x \geq 0$.
Solution: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
h(x)=g(x)-f(x)
$$

Since f and g are differentiable on \mathbb{R} by assumption, h is differentiable on \mathbb{R}, and thus also continuous on \mathbb{R}. Also $h(0)=g(0)-f(0)=0$, and $h^{\prime}(x)=g^{\prime}(x)-f^{\prime}(x) \geq 0$ for all $x \in \mathbb{R}$.
Then let $x>0$. Since h is continuous on $[0, x]$ and differentiable on $(0, x)$, by the Mean Value Theorem there exists $z \in(0, x)$ such that

$$
h(x)-h(0)=h^{\prime}(z)(x-0)
$$

Since $x>0, h(0)=0$, and $h^{\prime}(z) \geq 0$, this implies

$$
h(x)=h^{\prime}(z) x \geq 0
$$

Since $x>0$ was arbitrary, this implies $h(x) \geq 0$ for all $x \geq 0$. Thus $h(x)=g(x)-$ $f(x) \geq 0$ for all $x \geq 0$, or $f(x) \leq g(x)$ for all $x \geq 0$.
5. (30) Let $X \subseteq \mathbb{R}^{n}$ and $f, g: X \rightarrow \mathbb{R}^{m}$ be continuous functions. Let $\Psi: X \rightarrow 2^{\mathbb{R}^{m}}$ be a correspondence such that for each $x \in X$,

$$
\Psi(x)=\{t f(x)+(1-t) g(x): t \in[0,1]\}
$$

Show that Ψ is upper hemi-continuous.
Solution: First let $h: \mathbb{R} \times X \rightarrow \mathbb{R}^{m}$ be given by

$$
h(t, x)=t f(x)+(1-t) g(x)
$$

Then note that since f and g are continuous, h is continuous on $\mathbb{R} \times X$ (using the standard Euclidean metric on \mathbb{R}^{n+1}). Next note that for each $x \in X$,

$$
\Psi(x)=\{t f(x)+(1-t) g(x): t \in[0,1]\}=h([0,1] \times\{x\})
$$

Then let $x_{0} \in X$. Let $V \subseteq \mathbb{R}^{m}$ be an open set such that $\Psi\left(x_{0}\right) \subseteq V$. Since h is continuous and V is open, $h^{-1}(V) \subseteq \mathbb{R} \times X$ is open. Then

$$
\Psi\left(x_{0}\right)=h\left([0,1] \times\left\{x_{0}\right\}\right) \subseteq V \Rightarrow[0,1] \times\left\{x_{0}\right\} \subseteq h^{-1}(V)
$$

Since $h^{-1}(V)$ is open and $[0,1] \times\left\{x_{0}\right\}$ is compact, there exists $\varepsilon>0$ such that

$$
B_{\varepsilon}\left([0,1] \times\left\{x_{0}\right\}\right) \subseteq h^{-1}(V)
$$

(for example, by $\# 5$ on the 2019 exam). Then let $U=B_{\varepsilon}\left(x_{0}\right)$. Then $x_{0} \in U$ and U is open. For $x \in U$ and $t \in[0,1],(t, x) \in B_{\varepsilon}\left([0,1] \times\left\{x_{0}\right\}\right) \subseteq h^{-1}(V)$, so

$$
h(t, x)=t f(x)+(1-t) g(x) \in V
$$

Thus

$$
\Psi(x)=\{t f(x)+(1-t) g(x): t \in[0,1]\} \subseteq V \quad \forall x \in U
$$

Thus Ψ is uhc at x_{0}. Since $x_{0} \in X$ was arbitrary, Ψ is uhc.
Here is an argument instead using the sequential characterization of uhc. First note that for each $x \in X, \Psi(x)$ is compact. This is straightforward to show. For example, $[0,1] \times\{x\} \subseteq \mathbb{R} \times \mathbb{R}^{n}$ is a compact set, and since h is continuous, $h([0,1] \times\{x\})=\Psi(x)$ is a compact set. Alternatively, it is straightforward to show this directly. For example, since $\Psi(x) \subseteq \mathbb{R}^{m}$ it suffices to show that $\Psi(x)$ is closed and bounded. To see that $\Psi(x)$ is bounded, note that if $y \in \Psi(x)$ then $y=t f(x)+(1-t) g(x)$ for some $t \in[0,1]$, so

$$
\|y\|=\|t f(x)+(1-t) g(x)\| \leq t\|f(x)\|+(1-t)\|g(x)\| \leq\|f(x)\|+\|g(x)\|
$$

To see that $\Psi(x)$ is closed, suppose $\left\{y_{n}\right\} \subseteq \Psi(x)$ and $y_{n} \rightarrow y$ for some $y \in \mathbb{R}^{m}$. For each $n, y_{n}=t_{n} f(x)+\left(1-t_{n}\right) g(x)$ for some $t_{n} \in[0,1]$. Then $\left\{t_{n}\right\} \subseteq[0,1]$ and $[0,1]$ is compact, so there is a subsequence $\left\{t_{n_{k}}\right\}$ such that $t_{n_{k}} \rightarrow t \in[0,1]$. Then $y_{n_{k}}=t_{n_{k}} f(x)+\left(1-t_{n_{k}}\right) g(x) \rightarrow t f(x)+(1-t) g(x)$, and also $y_{n_{k}} \rightarrow y$, so $y=t f(x)+(1-t) g(x)$. This implies $y \in \Psi(x)$ by definition, which shows that $\Psi(x)$ is closed.
Since $\Psi(x)$ is compact for each $x \in X$, the sequential characterization of uhc can be used to show that Ψ is uhc. Then to that end, let $x_{0} \in X$. Suppose $\left\{x_{n}\right\} \subseteq X$ with $x_{n} \rightarrow x_{0}$, and $y_{n} \in \Psi\left(x_{n}\right)$ for each n. By definition, for every n there exists $t_{n} \in[0,1]$ such that

$$
y_{n}=t_{n} f\left(x_{n}\right)+\left(1-t_{n}\right) g\left(x_{n}\right)
$$

Then $\left\{t_{n}\right\} \subseteq[0,1]$ and $[0,1]$ is compact, so there is a subsequence $\left\{t_{n_{k}}\right\}$ such that $t_{n_{k}} \rightarrow t \in[0,1]$. Thus using the continuity of f and g,

$$
y_{n_{k}}=t_{n_{k}} f\left(x_{n_{k}}\right)+\left(1-t_{n_{k}}\right) g\left(x_{n_{k}}\right) \rightarrow t f\left(x_{0}\right)+(1-t) g\left(x_{0}\right)
$$

and $y=t f\left(x_{0}\right)+(1-t) g\left(x_{0}\right) \in \Psi\left(x_{0}\right)$ by definition. Thus Ψ is uhc at x_{0}. Since $x_{0} \in X$ was arbitrary, Ψ is uhc.
6. (30) Let (X, d) be a metric space and $F_{i} \subseteq X$ be compact for each $i \in \mathbb{N}$. Let $U \subseteq X$ be an open set such that $\bigcap_{i=1}^{\infty} F_{i} \subseteq U$. Show that there exists $n \in \mathbb{N}$ such that $\bigcap_{i=1}^{n} F_{i} \subseteq U$. Solution: Suppose not. Then for every $n \in \mathbb{N}, \bigcap_{i=1}^{n} F_{i} \nsubseteq U$. So for every n there exists $x_{n} \in\left(\bigcap_{i=1}^{n} F_{i}\right) \backslash U$. Since $x_{n} \in \bigcap_{i=1}^{n} F_{i}$ for each $n,\left\{x_{n}\right\} \subseteq F_{1}$. Then F_{1} is compact, so there is a subsequence $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k}} \rightarrow x \in F_{1}$. For each n there exists $K>0$ such that $n_{k}>n$ for all $k>K$. Thus given n, there exists $K>0$ such that

$$
x_{n_{k}} \in \bigcap_{i=1}^{n_{k}} F_{i} \subseteq \bigcap_{i=1}^{n} F_{i} \quad \forall k>K
$$

Since $\bigcap_{i=1}^{n} F_{i}$ is closed, this implies $x \in \bigcap_{i=1}^{n} F_{i}$. This is true for every n, so $x \in \bigcap_{i=1}^{\infty} F_{i}$. Then $\bigcap_{i=1}^{\infty} F_{i} \subseteq U$ by assumption, so $x \in U$ where U is open. But $x_{n_{k}} \notin U$ for each k by construction, which is a contradiction. Thus there exists $n \in \mathbb{N}$ such that $\bigcap_{i=1}^{n} F_{i} \subseteq U$.

Here is another argument using open covers. By assumption $\bigcap_{i=1}^{\infty} F_{i} \subseteq U$, which implies $\left(\bigcap_{i=1}^{\infty} F_{i}\right) \backslash U=\bigcap_{i=1}^{\infty}\left(F_{i} \backslash U\right)=\emptyset$. Then note that for each $i, F_{i} \backslash U=F_{i} \cap U^{c}$, and U^{c} is
closed since U is open. Thus $F_{i} \backslash U$ is compact for each i. Now consider $G=F_{1} \backslash U$. Then G is compact, and

$$
\emptyset=\bigcap_{i=1}^{\infty}\left(F_{i} \backslash U\right)=\left(F_{1} \backslash U\right) \cap\left(\bigcap_{i=2}^{\infty}\left(F_{i} \backslash U\right)\right)=G \cap\left(\bigcap_{i=2}^{\infty}\left(F_{i} \backslash U\right)\right)
$$

This implies

$$
G=F_{1} \backslash U \subseteq\left(\bigcap_{i=2}^{\infty}\left(F_{i} \backslash U\right)\right)^{c}=\bigcup_{i=2}^{\infty}\left(F_{i} \backslash U\right)^{c}
$$

Let $V_{i}=\left(F_{i} \backslash U\right)^{c}$ for each $i=2,3, \ldots$. Then V_{i} is open for each i, and $G \subseteq \bigcup_{i=2}^{\infty} V_{i}$, so $\left\{V_{i}: i=2,3, \ldots\right\}$ is an open cover of G. Since G is compact, there exist i_{1}, \ldots, i_{m} such that $G \subseteq V_{i_{1}} \cup \cdots \cup V_{i_{m}}$. Set $n=\max \left\{i_{1}, \ldots, i_{m}\right\}$, and note that

$$
V_{i_{1}} \cup \cdots \cup V_{i_{m}} \subseteq \bigcup_{i=2}^{n} V_{i}
$$

So

$$
G \subseteq V_{i_{1}} \cup \cdots \cup V_{i_{m}} \subseteq \bigcup_{i=2}^{n} V_{i}=\bigcup_{i=2}^{n}\left(F_{i} \backslash U\right)^{c}
$$

Then $G=F_{1} \backslash U \subseteq \bigcup_{i=2}^{n}\left(F_{i} \backslash U\right)^{c}=\left(\bigcap_{i=2}^{n}\left(F_{i} \backslash U\right)\right)^{c}$, which implies $F_{1} \backslash U \cap\left(\bigcap_{i=2}^{n}\left(F_{i} \backslash U\right)\right)=\emptyset$.
Thus $\bigcap_{i=1}^{n}\left(F_{i} \backslash U\right)=\left(\bigcap_{i=1}^{n} F_{i}\right) \backslash U=\emptyset$. This implies $\bigcap_{i=1}^{n} F_{i} \subseteq U$.
7. (30) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuous function. Let

$$
B=\left\{x \in \mathbb{R}^{n}: x=\lambda f(x) \text { for some } \lambda \in[0,1]\right\}
$$

Suppose B is bounded. Show that f has a fixed point.
(Hint: Choose $M>0$ such that $\|x\|<M$ for all $x \in B$. If x^{*} is a fixed point of f, then $x^{*}=\lambda f\left(x^{*}\right)$ for $\lambda=1$.)
Solution: First choose $M>0$ such that $\|x\|<M$ for all $x \in B$; this is possible because B is bounded by assumption. Then define $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
g(x)= \begin{cases}f(x) & \text { if }\|f(x)\| \leq M \\ \frac{M}{\|f(x)\|} f(x) & \text { if }\|f(x)\|>M\end{cases}
$$

Then note that $\|g(x)\| \leq M$ for all $x \in \mathbb{R}^{n}$, as if $\|f(x)\| \leq M$ then $g(x)=f(x)$, and thus $\|g(x)\| \leq M$ as well, and if $\|f(x)\|>M$ then $g(x)=\frac{M}{\|f(x)\|} f(x)$, so

$$
\|g(x)\|=\left\|\frac{M}{\|f(x)\|} f(x)\right\|=\frac{M}{\|f(x)\|}\|f(x)\|=M
$$

Thus $g(x) \in B_{M}(0)$ for all $x \in \mathbb{R}^{n}$. In particular, $g: B_{M}(0) \rightarrow B_{M}(0)$. Also note that if x^{*} is a fixed point of g, then x^{*} must also be a fixed point of f. To see this, suppose $g\left(x^{*}\right)=x^{*}$. If $\left\|f\left(x^{*}\right)\right\| \leq M$, then $g\left(x^{*}\right)=f\left(x^{*}\right)$ by definition, so $x^{*}=g\left(x^{*}\right)=f\left(x^{*}\right)$. If instead $\left\|f\left(x^{*}\right)\right\|>M$, then

$$
x^{*}=g\left(x^{*}\right)=\frac{M}{\left\|f\left(x^{*}\right)\right\|} f\left(x^{*}\right)
$$

Since $\left\|f\left(x^{*}\right)\right\|>M, \frac{M}{\left\|f\left(x^{*}\right)\right\|}<1$. So $x^{*}=\lambda f\left(x^{*}\right)$ with $\lambda \in[0,1]$, which implies $x^{*} \in B$ by definition. But

$$
\left\|x^{*}\right\|=\left\|g\left(x^{*}\right)\right\|=\frac{M}{\left\|f\left(x^{*}\right)\right\|}\left\|f\left(x^{*}\right)\right\|=M
$$

which is a contradiction, since $\|x\|<M$ for all $x \in B$ by construction.
Thus to show that f has a fixed point, it suffices to show that g has a fixed point. Then note that $B_{M}(0)$ is a nonempty, compact, convex subset of \mathbb{R}^{n}, and $g: B_{M}(0) \rightarrow B_{M}(0)$, so by Brouwer's Fixed Point Theorem, to show that g has a fixed point in $B_{M}(0)$ it suffices to show that g is continuous. To that end, let $x \in \mathbb{R}^{n}$ and suppose $\left\{x_{n}\right\} \subseteq \mathbb{R}^{n}$ with $x_{n} \rightarrow x$. If $\|f(x)\|<M$, then $g(x)=f(x)$. Using the continuity of f and of the norm $\|\cdot\|,\left\|f\left(x_{n}\right)\right\|<M$ for all n sufficiently large, so $g\left(x_{n}\right)=f\left(x_{n}\right)$ for all n sufficiently large. Thus

$$
\lim _{n \rightarrow \infty} g\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)=g(x)
$$

again using the continuity of f. Similarly, if $\|f(x)\|>M$, then $\left\|f\left(x_{n}\right)\right\|>M$ for all n sufficiently large, so without loss of generality suppose $\left\|f\left(x_{n}\right)\right\|>0$ for all n. Then in this case, $g(x)=\frac{M}{\|f(x)\|} f(x)$ and $g\left(x_{n}\right)=\frac{M}{\left\|f\left(x_{n}\right)\right\|} f\left(x_{n}\right)$ for all n sufficiently large. Thus

$$
\lim _{n \rightarrow \infty} g\left(x_{n}\right)=\lim _{n \rightarrow \infty} \frac{M}{\left\|f\left(x_{n}\right)\right\|} f\left(x_{n}\right)=\frac{M}{\|f(x)\|} f(x)=g(x)
$$

Finally, if $\|f(x)\|=M$, then $g(x)=f(x)$. For all n sufficiently large, $\left\|f\left(x_{n}\right)\right\|>\frac{M}{2}>0$, so without loss of generality suppose $\left\|f\left(x_{n}\right)\right\|>0$ for all n. Then

$$
g\left(x_{n}\right)=\min \left(1, \frac{M}{\left\|f\left(x_{n}\right)\right\|}\right) f\left(x_{n}\right) \rightarrow f(x)=g(x)
$$

Thus g is continuous at x. Since $x \in \mathbb{R}^{n}$ was arbitrary, g is continuous.
By Brouwer's Fixed Point Theorem, g has a fixed point in $B_{M}(0)$. Thus there exists $x^{*} \in B_{M}(0)$ such that $x^{*}=g\left(x^{*}\right)$. By the argument above, x^{*} is also a fixed point of f.

