
Economics 204 Summer/Fall 2020
Final Exam – Suggested Solutions

Answer all of the questions below. Be as complete, correct, and concise as possible. There
are 7 questions for a total of 180 points possible; point values for each problem are in
parentheses. For questions with subparts, each subpart is worth the same number of points.
Use the points as a guide to allocating your time.

1. (15) Let A and B be n×n matrices that are similar, so there exists an invertible n×n

matrix P such that A = P−1BP . Show that for every k ∈ N, Ak = P−1BkP (where
Mk is the product of k copies of the n × n matrix M).

(Hint: use induction.)

Solution: For the base case k = 1, the claim follows by definition: A = P−1BP .
For the induction hypothesis, assume that the claim is true for some k ≥ 1, so Ak =
P−1BkP . Then for k + 1,

Ak+1 = AkA = (P−1BkP )(P−1BP )

using the induction hypothesis and similarity of A and B. Thus

Ak+1 = AkA = (P−1BkP )(P−1BP )

= P−1Bk(PP−1)BP

= P−1BkIBP

= P−1BkBP

= P−1Bk+1P

(Here I is the n × n identity matrix.) Thus the claim is true for k + 1. Thus by
induction, Ak = P−1BkP for every k ∈ N.

2. (15) Let (X, d) and (Y, ρ) be metric spaces and f, g : X → Y be continuous functions.
Let E ⊆ X be a dense subset of X, that is, a set such that E = X. Show that if
f(z) = g(z) for all z ∈ E, then f = g, that is, f(x) = g(x) for all x ∈ X.

Solution: Let x ∈ X. Since E = X, there is a sequence {xn} ⊆ E such that xn → x.
Since f and g are continuous at x, f(xn) → f(x) and g(xn) → g(x). Since xn ∈ E for
every n, f(xn) = g(xn) for every n. Thus

f(x) = lim
n→∞

f(xn) = lim
n→∞

g(xn) = g(x)

Thus f(x) = g(x). Since x ∈ X was arbitrary, f(x) = g(x) for all x ∈ X.
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3. (30) Let X and Y be vector spaces over the same field F , and let T : X → Y be a
linear transformation. Suppose W ⊆ X is a subset of X that spans X, and T (W ) ⊆ Y

is linearly independent.

(a.) Show that T is one-to-one.

Solution: Suppose x ∈ X and T (x) = 0. Since W spans X, there exist

α1, . . . , αn ∈ F and w1, . . . , wn ∈ W such that x =
n
∑

i=1

αiwi. Then

0 = T (x) = T (
n
∑

i=1

αiwi)

=
n
∑

i=1

αiT (wi) (using linearity of T )

But T (W ) is a linearly independent subset of Y , so this implies αi = 0 for each

i = 1, . . . , n. So x =
n
∑

i=1

αiwi = 0. Thus kerT = {0}. Since T is a linear

transformation, this implies T is one-to-one.

(b.) Show that W is a basis for X.

Solution: Since W spans X by assumption, it suffices to show that W is

linearly independent. To that end, suppose
n
∑

i=1

αiwi = 0 for some α1, . . . , αn ∈ F

and w1, . . . , wn ∈ W . Then since T is a linear transformation, T (0) = 0. Thus

0 = T (0) = T (

n
∑

i=1

αiwi) =

n
∑

i=1

αiT (wi)

using the linearity of T . But T (W ) is a linearly independent subset of Y , so this
implies αi = 0 for each i = 1, . . . , n. Thus W is linearly independent. Since W

spans X by assumption, W is a basis for X.

4. (30) Let f, g : R → R be differentiable functions. Suppose that f(0) = g(0) and
f ′(x) ≤ g′(x) for all x ∈ R. Show that f(x) ≤ g(x) for all x ≥ 0.

Solution: Let h : R → R be given by

h(x) = g(x) − f(x)

Since f and g are differentiable on R by assumption, h is differentiable on R, and thus
also continuous on R. Also h(0) = g(0) − f(0) = 0, and h′(x) = g′(x) − f ′(x) ≥ 0 for
all x ∈ R.

Then let x > 0. Since h is continuous on [0, x] and differentiable on (0, x), by the Mean
Value Theorem there exists z ∈ (0, x) such that

h(x) − h(0) = h′(z)(x − 0)
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Since x > 0, h(0) = 0, and h′(z) ≥ 0, this implies

h(x) = h′(z)x ≥ 0

Since x > 0 was arbitrary, this implies h(x) ≥ 0 for all x ≥ 0. Thus h(x) = g(x) −
f(x) ≥ 0 for all x ≥ 0, or f(x) ≤ g(x) for all x ≥ 0.

5. (30) Let X ⊆ R
n and f, g : X → R

m be continuous functions. Let Ψ : X → 2R
m

be a
correspondence such that for each x ∈ X,

Ψ(x) = {tf(x) + (1 − t)g(x) : t ∈ [0, 1]}

Show that Ψ is upper hemi-continuous.

Solution: First let h : R × X → R
m be given by

h(t, x) = tf(x) + (1 − t)g(x)

Then note that since f and g are continuous, h is continuous on R × X (using the
standard Euclidean metric on R

n+1). Next note that for each x ∈ X,

Ψ(x) = {tf(x) + (1 − t)g(x) : t ∈ [0, 1]} = h([0, 1] × {x})

Then let x0 ∈ X. Let V ⊆ R
m be an open set such that Ψ(x0) ⊆ V . Since h is

continuous and V is open, h−1(V ) ⊆ R × X is open. Then

Ψ(x0) = h([0, 1] × {x0}) ⊆ V ⇒ [0, 1] × {x0} ⊆ h−1(V )

Since h−1(V ) is open and [0, 1] × {x0} is compact, there exists ε > 0 such that

Bε([0, 1] × {x0}) ⊆ h−1(V )

(for example, by #5 on the 2019 exam). Then let U = Bε(x0). Then x0 ∈ U and U is
open. For x ∈ U and t ∈ [0, 1], (t, x) ∈ Bε([0, 1] × {x0}) ⊆ h−1(V ), so

h(t, x) = tf(x) + (1 − t)g(x) ∈ V

Thus
Ψ(x) = {tf(x) + (1 − t)g(x) : t ∈ [0, 1]} ⊆ V ∀x ∈ U

Thus Ψ is uhc at x0. Since x0 ∈ X was arbitrary, Ψ is uhc.

Here is an argument instead using the sequential characterization of uhc. First note
that for each x ∈ X, Ψ(x) is compact. This is straightforward to show. For example,
[0, 1]×{x} ⊆ R×R

n is a compact set, and since h is continuous, h([0, 1]×{x}) = Ψ(x)
is a compact set. Alternatively, it is straightforward to show this directly. For example,
since Ψ(x) ⊆ R

m it suffices to show that Ψ(x) is closed and bounded. To see that Ψ(x)
is bounded, note that if y ∈ Ψ(x) then y = tf(x) + (1 − t)g(x) for some t ∈ [0, 1], so

‖y‖ = ‖tf(x) + (1 − t)g(x)‖ ≤ t‖f(x)‖+ (1 − t)‖g(x)‖ ≤ ‖f(x)‖ + ‖g(x)‖

3



To see that Ψ(x) is closed, suppose {yn} ⊆ Ψ(x) and yn → y for some y ∈ R
m.

For each n, yn = tnf(x) + (1 − tn)g(x) for some tn ∈ [0, 1]. Then {tn} ⊆ [0, 1]
and [0, 1] is compact, so there is a subsequence {tnk

} such that tnk
→ t ∈ [0, 1].

Then ynk
= tnk

f(x) + (1 − tnk
)g(x) → tf(x) + (1 − t)g(x), and also ynk

→ y, so
y = tf(x) + (1 − t)g(x). This implies y ∈ Ψ(x) by definition, which shows that Ψ(x)
is closed.

Since Ψ(x) is compact for each x ∈ X, the sequential characterization of uhc can be
used to show that Ψ is uhc. Then to that end, let x0 ∈ X. Suppose {xn} ⊆ X with
xn → x0, and yn ∈ Ψ(xn) for each n. By definition, for every n there exists tn ∈ [0, 1]
such that

yn = tnf(xn) + (1 − tn)g(xn)

Then {tn} ⊆ [0, 1] and [0, 1] is compact, so there is a subsequence {tnk
} such that

tnk
→ t ∈ [0, 1]. Thus using the continuity of f and g,

ynk
= tnk

f(xnk
) + (1 − tnk

)g(xnk
) → tf(x0) + (1 − t)g(x0)

and y = tf(x0)+(1− t)g(x0) ∈ Ψ(x0) by definition. Thus Ψ is uhc at x0. Since x0 ∈ X

was arbitrary, Ψ is uhc.

6. (30) Let (X, d) be a metric space and Fi ⊆ X be compact for each i ∈ N. Let U ⊆ X

be an open set such that
∞
⋂

i=1

Fi ⊆ U . Show that there exists n ∈ N such that
n
⋂

i=1

Fi ⊆ U .

Solution: Suppose not. Then for every n ∈ N,
n
⋂

i=1

Fi 6⊆ U . So for every n there exists

xn ∈ (
n
⋂

i=1

Fi) \ U . Since xn ∈
n
⋂

i=1

Fi for each n, {xn} ⊆ F1. Then F1 is compact, so

there is a subsequence {xnk
} such that xnk

→ x ∈ F1. For each n there exists K > 0
such that nk > n for all k > K. Thus given n, there exists K > 0 such that

xnk
∈

nk
⋂

i=1

Fi ⊆
n
⋂

i=1

Fi ∀k > K

Since
n
⋂

i=1

Fi is closed, this implies x ∈
n
⋂

i=1

Fi. This is true for every n, so x ∈
∞
⋂

i=1

Fi.

Then
∞
⋂

i=1

Fi ⊆ U by assumption, so x ∈ U where U is open. But xnk
6∈ U for each k by

construction, which is a contradiction. Thus there exists n ∈ N such that
n
⋂

i=1

Fi ⊆ U .

Here is another argument using open covers. By assumption
∞
⋂

i=1

Fi ⊆ U , which implies

(
∞
⋂

i=1

Fi) \ U =
∞
⋂

i=1

(Fi \ U) = ∅. Then note that for each i, Fi \ U = Fi ∩ U c, and U c is
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closed since U is open. Thus Fi \ U is compact for each i. Now consider G = F1 \ U .
Then G is compact, and

∅ =
∞
⋂

i=1

(Fi \ U) = (F1 \ U) ∩

(

∞
⋂

i=2

(Fi \ U)

)

= G ∩

(

∞
⋂

i=2

(Fi \ U)

)

This implies

G = F1 \ U ⊆

(

∞
⋂

i=2

(Fi \ U)

)c

=
∞
⋃

i=2

(Fi \ U)c

Let Vi = (Fi \ U)c for each i = 2, 3, . . .. Then Vi is open for each i, and G ⊆
∞
⋃

i=2

Vi,

so {Vi : i = 2, 3, . . .} is an open cover of G. Since G is compact, there exist i1, . . . , im
such that G ⊆ Vi1 ∪ · · · ∪ Vim . Set n = max{i1, . . . , im}, and note that

Vi1 ∪ · · · ∪ Vim ⊆
n
⋃

i=2

Vi

So

G ⊆ Vi1 ∪ · · · ∪ Vim ⊆
n
⋃

i=2

Vi =

n
⋃

i=2

(Fi \ U)c

Then G = F1\U ⊆
n
⋃

i=2

(Fi\U)c = (
n
⋂

i=2

(Fi\U))c, which implies F1\U ∩(
n
⋂

i=2

(Fi\U)) = ∅.

Thus
n
⋂

i=1

(Fi \ U) = (
n
⋂

i=1

Fi) \ U = ∅. This implies
n
⋂

i=1

Fi ⊆ U .

7. (30) Let f : R
n → R

n be a continuous function. Let

B = {x ∈ R
n : x = λf(x) for some λ ∈ [0, 1]}

Suppose B is bounded. Show that f has a fixed point.

(Hint: Choose M > 0 such that ‖x‖ < M for all x ∈ B. If x∗ is a fixed point of f ,
then x∗ = λf(x∗) for λ = 1.)

Solution: First choose M > 0 such that ‖x‖ < M for all x ∈ B; this is possible
because B is bounded by assumption. Then define g : R

n → R
n by

g(x) =

{

f(x) if ‖f(x)‖ ≤ M
M

‖f(x)‖
f(x) if ‖f(x)‖ > M

Then note that ‖g(x)‖ ≤ M for all x ∈ R
n, as if ‖f(x)‖ ≤ M then g(x) = f(x), and

thus ‖g(x)‖ ≤ M as well, and if ‖f(x)‖ > M then g(x) = M
‖f(x)‖

f(x), so

‖g(x)‖ =

∥

∥

∥

∥

M

‖f(x)‖
f(x)

∥

∥

∥

∥

=
M

‖f(x)‖
‖f(x)‖ = M
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Thus g(x) ∈ BM (0) for all x ∈ R
n. In particular, g : BM (0) → BM(0). Also note that

if x∗ is a fixed point of g, then x∗ must also be a fixed point of f . To see this, suppose
g(x∗) = x∗. If ‖f(x∗)‖ ≤ M , then g(x∗) = f(x∗) by definition, so x∗ = g(x∗) = f(x∗).
If instead ‖f(x∗)‖ > M , then

x∗ = g(x∗) =
M

‖f(x∗)‖
f(x∗)

Since ‖f(x∗)‖ > M , M
‖f(x∗)‖

< 1. So x∗ = λf(x∗) with λ ∈ [0, 1], which implies x∗ ∈ B

by definition. But

‖x∗‖ = ‖g(x∗)‖ =
M

‖f(x∗)‖
‖f(x∗)‖ = M

which is a contradiction, since ‖x‖ < M for all x ∈ B by construction.

Thus to show that f has a fixed point, it suffices to show that g has a fixed point. Then
note that BM (0) is a nonempty, compact, convex subset of R

n, and g : BM (0) → BM(0),
so by Brouwer’s Fixed Point Theorem, to show that g has a fixed point in BM(0) it
suffices to show that g is continuous. To that end, let x ∈ R

n and suppose {xn} ⊆ R
n

with xn → x. If ‖f(x)‖ < M , then g(x) = f(x). Using the continuity of f and of
the norm ‖ · ‖, ‖f(xn)‖ < M for all n sufficiently large, so g(xn) = f(xn) for all n

sufficiently large. Thus

lim
n→∞

g(xn) = lim
n→∞

f(xn) = f(x) = g(x)

again using the continuity of f . Similarly, if ‖f(x)‖ > M , then ‖f(xn)‖ > M for all n

sufficiently large, so without loss of generality suppose ‖f(xn)‖ > 0 for all n. Then in
this case, g(x) = M

‖f(x)‖
f(x) and g(xn) = M

‖f(xn)‖
f(xn) for all n sufficiently large. Thus

lim
n→∞

g(xn) = lim
n→∞

M

‖f(xn)‖
f(xn) =

M

‖f(x)‖
f(x) = g(x)

Finally, if ‖f(x)‖ = M , then g(x) = f(x). For all n sufficiently large, ‖f(xn)‖ > M
2

> 0,
so without loss of generality suppose ‖f(xn)‖ > 0 for all n. Then

g(xn) = min

(

1,
M

‖f(xn)‖

)

f(xn) → f(x) = g(x)

Thus g is continuous at x. Since x ∈ R
n was arbitrary, g is continuous.

By Brouwer’s Fixed Point Theorem, g has a fixed point in BM (0). Thus there exists
x∗ ∈ BM(0) such that x∗ = g(x∗). By the argument above, x∗ is also a fixed point of
f .
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