Econ 204 2021
Lecture 2

Outline

1. Cardinality (cont.)
2. Algebraic Structures: Fields and Vector Spaces
3. Axioms for \(\mathbb{R} \)
4. Sup, Inf, and the Supremum Property
5. Intermediate Value Theorem

Announcements
- PSL due Friday
 1 pm in bCourses
- marked slides posted on class website after lectures
Cardinality

Definition 5. Two sets A, B are numerically equivalent (or have the same cardinality) if there is a bijection $f : A \to B$, that is, a function $f : A \to B$ that is 1-1 ($a \neq a' \Rightarrow f(a) \neq f(a')$), and onto ($\forall b \in B \ \exists a \in A \text{ s.t. } f(a) = b$).

Example: $A = \{2, 4, 6, \ldots, 50\}$ is numerically equivalent to the set $\{1, 2, \ldots, 25\}$ under the function $f(n) = 2n$.

$B = \{1, 4, 9, 16, 25, 36, 49 \ldots\} = \{n^2 : n \in \mathbb{N}\}$ is numerically equivalent to \mathbb{N}.
Cardinality

A set is either finite or infinite. A set is \textit{finite} if it is numerically equivalent to \(\{1, \ldots, n\} \) for some \(n \). A set that is not finite is \textit{infinite}.

In particular, \(A = \{2, 4, 6, \ldots, 50\} \) is finite, \(B = \{1, 4, 9, 16, 25, 36, 49 \ldots\} \) is infinite.

A set is \textit{countable} if it is numerically equivalent to the set of natural numbers \(\mathbb{N} = \{1, 2, 3, \ldots\} \). An infinite set that is not countable is called \textit{uncountable}.
Cardinality

Example: The set of integers \(\mathbb{Z} \) is countable.

\[
\mathbb{Z} = \{0, 1, -1, 2, -2, \ldots\}
\]

Define \(f : \mathbb{N} \rightarrow \mathbb{Z} \) by

\[
\begin{align*}
 f(1) &= 0 \\
 f(2) &= 1 \\
 f(3) &= -1 \\
 \vdots
 \end{align*}
\]

\[
f(n) = (-1)^n \left\lfloor \frac{n}{2} \right\rfloor
\]

where \(\lfloor x \rfloor \) is the greatest integer less than or equal to \(x \). It is straightforward to verify that \(f \) is one-to-one and onto.
Cardinality

Theorem 5. The set of rational numbers \mathbb{Q} is countable.

“Picture Proof”:

$$\mathbb{Q} = \left\{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \right\}$$

$$= \left\{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \right\}$$
Go back and forth on upward-sloping diagonals, omitting the
repeats:

\[f(1) = 0 \]
\[f(2) = 1 \]
\[f(3) = \frac{1}{2} \]
\[f(4) = -1 \]
\[\vdots \]

\[f : \mathbb{N} \rightarrow \mathbb{Q}, \] \(f \) is one-to-one and onto.
Cardinality (cont.)

Notation: Given a set A, 2^A is the set of all subsets of A. This is the “power set” of A, also denoted $P(A)$.

Important example of an uncountable set:

Theorem 1 (Cantor). $2^\mathbb{N}$, the set of all subsets of \mathbb{N}, is not countable.

Proof. Suppose $2^\mathbb{N}$ is countable. Then there is a bijection $f : \mathbb{N} \to 2^\mathbb{N}$. Let $A_m = f(m)$. We create an infinite matrix, whose
\((m, n)^{th}\) entry is 1 if \(n \in A_m\), 0 otherwise:

<table>
<thead>
<tr>
<th></th>
<th>(N)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1) = (\emptyset)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
</tr>
<tr>
<td>(A_2) = {1}</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
</tr>
<tr>
<td>(2^N) (A_3) = {1, 2, 3}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
</tr>
<tr>
<td>(A_4) = (\mathbb{N})</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>\ldots</td>
</tr>
<tr>
<td>(A_5) = (2^\mathbb{N})</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>\ldots</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Now, on the main diagonal, change all the 0s to 1s and vice
versa:

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(1)$</td>
<td>$A_1 = \emptyset$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>$f(2)$</td>
<td>$A_2 = {1}$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>2^N</td>
<td>$A_3 = {1, 2, 3}$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>$A_4 = N$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>$A_5 = 2N$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Let

\[t_{mn} = \begin{cases}
1 & \text{if } n \in A_m \\
0 & \text{if } n \notin A_m
\end{cases} \]

Let \(A = \{m \in \mathbb{N} : t_{mm} = 0\} \).

\[
m \in A \iff t_{mm} = 0 \\
\iff m \notin A_m \\
1 \in A \iff 1 \notin A_1 \text{ so } A \neq A_1 \\
2 \in A \iff 2 \notin A_2 \text{ so } A \neq A_2 \\
\vdots \\
m \in A \iff m \notin A_m \text{ so } A \neq A_m \quad \forall n \in \mathbb{N}
\]

Therefore, \(A \neq f(m) \) for any \(m \), so \(f \) is not onto, contradiction. \(\Box \)
Some Additional Facts About Cardinality

Recall we let \(|A|\) denote the cardinality of a set \(A\).

- if \(A\) is numerically equivalent to \(\{1, \ldots, n\}\) for some \(n \in \mathbb{N}\), then \(|A| = n\).

- \(A\) and \(B\) are numerically equivalent if and only if \(|A| = |B|\)

- if \(|A| = n\) and \(A\) is a proper subset of \(B\) (that is, \(A \subseteq B\) and \(A \neq B\)) then \(|A| < |B|\)
• if A is countable and B is uncountable, then
 $$n < |A| < |B| \quad \forall n \in \mathbb{N}$$

• if $A \subseteq B$ then $|A| \leq |B|$:

• if $r : A \rightarrow B$ is 1-1, then $|A| \leq |B|$:

• if B is countable and $A \subseteq B$, then A is at most countable, that is, A is either empty, finite, or countable

• if $r : A \rightarrow B$ is 1-1 and B is countable, then A is at most countable
Algebraic Structures: Fields

Definition 1. A field \(\mathcal{F} = (F, +, \cdot) \) is a 3-tuple consisting of a set \(F \) and two binary operations \(+, \cdot : F \times F \to F\) such that

1. **Associativity of \(+\):**
 \[
 \forall \alpha, \beta, \gamma \in F, \quad (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)
 \]

2. **Commutativity of \(+\):**
 \[
 \forall \alpha, \beta \in F, \quad \alpha + \beta = \beta + \alpha
 \]

3. **Existence of additive identity:**
 \[
 \exists! 0 \in F \text{ s.t. } \forall \alpha \in F, \quad \alpha + 0 = 0 + \alpha = \alpha
 \]
4. Existence of additive inverse:
\[\forall \alpha \in F \; \exists!(-\alpha) \in F \; s.t. \; \alpha + (-\alpha) = (-\alpha) + \alpha = 0 \]
Define \(\alpha - \beta = \alpha + (-\beta) \)

5. Associativity of \(\cdot \):
\[\forall \alpha, \beta, \gamma \in F, \; (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma) \]

6. Commutativity of \(\cdot \):
\[\forall \alpha, \beta \in F, \; \alpha \cdot \beta = \beta \cdot \alpha \]

7. Existence of multiplicative identity:
\[\exists!1 \in F \; s.t. \; 1 \neq 0 \; and \; \forall \alpha \in F, \; \alpha \cdot 1 = 1 \cdot \alpha = \alpha \]
8. Existence of multiplicative inverse:

\[\forall \alpha \in F \text{ s.t. } \alpha \neq 0 \exists! \alpha^{-1} \in F \text{ s.t. } \alpha \cdot \alpha^{-1} = \alpha^{-1} \cdot \alpha = 1 \]

Define \(\frac{\alpha}{\beta} = \alpha \beta^{-1} \). \(\beta \neq 0 \)

9. Distributivity of multiplication over addition:

\[\forall \alpha, \beta, \gamma \in F, \ \alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma \]
Fields

Examples:

- \(R \) \(\text{standard } +, \cdot \)
 - \(\mathbb{C} \) \(\text{complex numbers} \)
 - \(\mathbb{C} = \{ x + iy : x, y \in \mathbb{R} \} \). \(i^2 = -1 \), so
 \[
 (x+iy)(w+iz) = xw+ixz+iwy+i^2yz = (xw-yz)+i(xz+wy)
 \]
 - \(\mathbb{Q} : \mathbb{Q} \subset \mathbb{R}, \mathbb{Q} \neq \mathbb{R} \). \(\mathbb{Q} \) is closed under \(+, \cdot \), taking additive and multiplicative inverses; the field axioms are inherited from the field axioms on \(\mathbb{R} \), so \(\mathbb{Q} \) is a field.
• \mathbb{N} is not a field: no additive identity. $m + n \neq m$ for $n \neq 0$

• \mathbb{Z} is not a field; no multiplicative inverse for 2. $\nexists z \in \mathbb{Z}$ s.t. $z^2 = 1$

• $\mathbb{Q}(\sqrt{2})$, the smallest field containing $\mathbb{Q} \cup \{\sqrt{2}\}$. Take \mathbb{Q}, add $\sqrt{2}$, and close up under $+$, \cdot, taking additive and multiplicative inverses. One can show

$$\mathbb{Q}(\sqrt{2}) = \{ q + r\sqrt{2} : q, r \in \mathbb{Q} \}$$

For example,

$$\left(q + r\sqrt{2}\right)^{-1} = \frac{q}{q^2 - 2r^2} - \frac{r}{q^2 - 2r^2}\sqrt{2}$$
A finite field: $F_2 = (\{0, 1\}, +, \cdot)$ where we define

\[
\begin{align*}
0 + 0 &= 0 & 0 \cdot 0 &= 0 \\
0 + 1 &= 1 + 0 &= 1 & 0 \cdot 1 &= 1 \cdot 0 &= 0 \\
1 + 1 &= 0 & 1 \cdot 1 &= 1
\end{align*}
\]

("Arithmetic mod 2") \(\sim\Rightarrow\ 1 = -1\)
Vector Spaces

Definition 2. A vector space is a 4-tuple \((V, F, +, \cdot)\) where \(V\) is a set of elements, called vectors, \(F\) is a field, \(+\) is a binary operation on \(V\) called vector addition, and \(\cdot : F \times V \rightarrow V\) is called scalar multiplication, satisfying

1. **Associativity of \(+\):**

 \[\forall x, y, z \in V, \ (x + y) + z = x + (y + z)\]

2. **Commutativity of \(+\):**

 \[\forall x, y \in V, \ x + y = y + x\]
3. Existence of vector additive identity:

\[\exists! 0 \in V \text{ s.t. } \forall x \in V, \ x + 0 = 0 + x = x \]

4. Existence of vector additive inverse:

\[\forall x \in V \ \exists! (-x) \in V \text{ s.t. } x + (-x) = (-x) + x = 0 \]

Define \(x - y \) to be \(x + (-y) \).

5. Distributivity of scalar multiplication over vector addition:

\[\forall \alpha \in F, x, y \in V, \ \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y \]

6. Distributivity of scalar multiplication over scalar addition:

\[\forall \alpha, \beta \in F, x \in V \ \ (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x \]
7. Associativity of \cdot:

$$\forall \alpha, \beta \in F, x \in V \quad (\alpha \cdot \beta) \cdot x = \alpha \cdot (\beta \cdot x)$$

8. Multiplicative identity:

$$\forall x \in V \quad 1 \cdot x = x$$

(Note that 1 is the multiplicative identity in F; $1 \not\in V$)

"V is a vector space over F"

or "V over $F"
Vector Spaces

Examples:

1. \mathbb{R}^n over \mathbb{R}.

2. \mathbb{R} is a vector space over \mathbb{Q}:

 (scalar multiplication) $q \cdot r = qr$ (product in \mathbb{R})

 \mathbb{R} is not finite-dimensional over \mathbb{Q}, i.e. \mathbb{R} is not \mathbb{Q}^n for any $n \in \mathbb{N}$.

3. \mathbb{R} is a vector space over \mathbb{R}.
4. \(\mathbb{Q}(\sqrt{2}) \) is a vector space over \(\mathbb{Q} \). As a vector space, it is \(\mathbb{Q}^2 \); as a field, you need to take the funny field multiplication. i.e. \((q, r)\) versus \(q + r\sqrt{2}\)

5. \(\mathbb{Q}(\sqrt[3]{2}) \), as a vector space over \(\mathbb{Q} \), is \(\mathbb{Q}^3 \).

6. \((F_2)^n\) is a finite vector space over \(F_2 \).

7. \(C([0, 1]) \), the space of all continuous real-valued functions on \([0, 1]\), is a vector space over \(\mathbb{R} \).

- Vector addition: \(f, g \in C([0, 1]) \)

\[(f + g)(t) = f(t) + g(t) \quad \forall t \in [0, 1] \]
Note we define the function $f + g$ by specifying what value it takes for each $t \in [0, 1]$.

- scalar multiplication: $\alpha \in \mathbb{R}$, $f \in C([0,1])$
 \[(\alpha f)(t) = \alpha(f(t)) \quad \forall t \in [0,1]\]

- vector additive identity: 0 is the function which is identically zero: $0(t) = 0$ for all $t \in [0,1]$.

- vector additive inverse:
 \[(-f)(t) = -(f(t)) \quad \forall t \in [0,1]\]
Axioms for \(\mathbb{R} \)

1. \(\mathbb{R} \) is a field with the usual operations \(+\), \(\cdot\), additive identity 0, and multiplicative identity 1.

2. **Order Axiom:** There is a complete ordering \(\leq\), i.e. \(\leq\) is reflexive, transitive, antisymmetric \((\alpha \leq \beta, \beta \leq \alpha \Rightarrow \alpha = \beta)\) with the property that

\[
\forall \alpha, \beta \in \mathbb{R} \text{ either } \alpha \leq \beta \text{ or } \beta \leq \alpha
\]

The order is compatible with \(+\) and \(\cdot\), i.e.

\[
\forall \alpha, \beta, \gamma \in \mathbb{R} \left\{ \begin{array}{l}
\alpha \leq \beta \Rightarrow \alpha + \gamma \leq \beta + \gamma \\
\alpha \leq \beta, 0 \leq \gamma \Rightarrow \alpha \gamma \leq \beta \gamma
\end{array} \right.
\]

\(\alpha \geq \beta\) means \(\beta \leq \alpha\). \(\alpha < \beta\) means \(\alpha \leq \beta\) and \(\alpha \neq \beta\).
Completeness Axiom

3. **Completeness Axiom:** Suppose $L, H \subseteq \mathbb{R}$, $L \neq \emptyset \neq H$ satisfy

$$\ell \leq h \ \forall \ell \in L, h \in H$$

Then

$$\exists \alpha \in \mathbb{R} \text{ s.t. } \ell \leq \alpha \leq h \ \forall \ell \in L, h \in H$$

The Completeness Axiom differentiates \mathbb{R} from \mathbb{Q}: \mathbb{Q} satisfies all the axioms for \mathbb{R} except the Completeness Axiom.
Sups, Infs, and the Supremum Property

Definition 3. Suppose $X \subseteq \mathbb{R}$. We say $u \in \mathbb{R}$ is an upper bound for X if

$$x \leq u \ \forall x \in X$$

and $\ell \in \mathbb{R}$ is a lower bound for X if

$$\ell \leq x \ \forall x \in X$$

X is bounded above if there is an upper bound for X, and bounded below if there is a lower bound for X.
Definition 4. Suppose \(X \) is bounded above. The supremum of \(X \), written \(\sup X \), is the least upper bound for \(X \), i.e. \(\sup X \in \mathbb{R} \) satisfies

\[
\sup X \geq x \quad \forall x \in X \quad (\text{sup } X \text{ is an upper bound})
\]

\[
\forall y < \sup X \ \exists x \in X \text{ s.t. } x > y \quad (\text{there is no smaller upper bound})
\]

Analogously, suppose \(X \) is bounded below. The infimum of \(X \), written \(\inf X \), is the greatest lower bound for \(X \), i.e. \(\inf X \) satisfies

\[
\inf X \leq x \quad \forall x \in X \quad (\text{inf } X \text{ is a lower bound})
\]

\[
\forall y > \inf X \ \exists x \in X \text{ s.t. } x < y \quad (\text{there is no greater lower bound})
\]

If \(X \) is not bounded above, write \(\sup X = \infty \). If \(X \) is not bounded below, write \(\inf X = -\infty \). Convention: \(\sup \emptyset = -\infty \), \(\inf \emptyset = +\infty \).
The Supremum Property

The Supremum Property: Every nonempty set of real numbers that is bounded above has a supremum, which is a real number. Every nonempty set of real numbers that is bounded below has an infimum, which is a real number.

Note: \(\sup X \) need not be an element of \(X \). For example, \(\sup (0, 1) = 1 \notin (0, 1) \).
The Supremum Property

Theorem 2 (Theorem 6.8, plus ...). The Supremum Property and the Completeness Axiom are equivalent.

Proof. Assume the Completeness Axiom. Let $X \subseteq \mathbb{R}$ be a nonempty set that is bounded above. Let U be the set of all upper bounds for X. Since X is bounded above, $U \neq \emptyset$. If $x \in X$ and $u \in U$, $x \leq u$ since u is an upper bound for X. So

$$x \leq u \ \forall x \in X, u \in U$$

By the Completeness Axiom,

$$\exists \alpha \in \mathbb{R} \text{ s.t. } x \leq \alpha \leq u \ \forall x \in X, u \in U$$

α is an upper bound for X, and it is less than or equal to every other upper bound for X, so it is the least upper bound for X,
so \(\sup X = \alpha \in \mathbb{R} \). The case in which \(X \) is bounded below is similar. Thus, the Supremum Property holds.

Conversely, assume the Supremum Property. Suppose \(L, H \subseteq \mathbb{R}, L \neq \emptyset \neq H \), and

\[
\ell \leq h \ \forall \ell \in L, h \in H
\]

Since \(L \neq \emptyset \) and \(L \) is bounded above (by any element of \(H \)), \(\alpha = \sup L \) exists and is real. By the definition of supremum, \(\alpha \) is an upper bound for \(L \), so

\[
\ell \leq \alpha \ \forall \ell \in L
\]

Suppose \(h \in H \). Then \(h \) is an upper bound for \(L \), so by the definition of supremum, \(\alpha \leq h \). Therefore, we have shown that

\[
\ell \leq \alpha \leq h \ \forall \ell \in L, h \in H
\]

so the Completeness Axiom holds. \(\square \)
Archimedean Property

Theorem 3 (Archimedean Property, Theorem 6.10 + ...).

\[\forall x, y \in \mathbb{R}, y > 0 \ \exists n \in \mathbb{N} \text{ s.t. } ny = (y + \cdots + y) > x \]

Proof. Exercise. This is a nice exercise in proof by contradiction, using the Supremum Property. \(\square\)
Intermediate Value Theorem

Theorem 4 (Intermediate Value Theorem). *Suppose $f : [a, b] \to \mathbb{R}$ is continuous, and $f(a) < d < f(b)$. Then there exists $c \in (a, b)$ such that $f(c) = d$.*

Proof. Later, we will give a slick proof. Here, we give a bare-hands proof using the Supremum Property. Let

$$B = \{ x \in [a, b] : f(x) < d \}$$

$a \in B$, so $B \neq \emptyset$; $B \subseteq [a, b]$, so B is bounded above. By the Supremum Property, $\sup B$ exists and is real so let $c = \sup B$. Since $a \in B$, $c \geq a$. $B \subseteq [a, b]$, so $c \leq b$. Therefore, $c \in [a, b]$.

15
$f(a) < d < f(b)$

$B = \{ x \in [a, b] : f(x) < d \}$

$c = \sup B$

Claim: $f(c) = d$
We claim that $f(c) = d$. If not, suppose $f(c) < d$. Then since $f(b) > d$, $c \neq b$, so $c < b$. Let $\varepsilon = \frac{d-f(c)}{2} > 0$. Since f is continuous at c, there exists $\delta > 0$ such that

$$|x - c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$$

$$\Rightarrow f(x) < f(c) + \varepsilon$$

$$= f(c) + \frac{d-f(c)}{2}$$

$$= \frac{f(c)+d}{2}$$

$$< \frac{d+d}{2}$$

$$= d$$

so $(c, c + \delta) \subseteq B$, so $c \neq \sup B$, contradiction.
$f(c) < s \Rightarrow \exists \delta > 0 \text{ s.t. for } x \in (c - \delta, c + \delta), f(x) < d$

$\Rightarrow c \neq \sup B$
Suppose \(f(c) > d \). Then since \(f(a) < d \), \(a \neq c \), so \(c > a \). Let
\[
\varepsilon = \frac{\frac{f(c) - d}{2}}{2} > 0.
\]
Since \(f \) is continuous at \(c \), there exists \(\delta > 0 \) such that
\[
|x - c| < \delta \quad \Rightarrow \quad |f(x) - f(c)| < \varepsilon
\]
\[
\Rightarrow \quad f(x) > f(c) - \varepsilon
\]
\[
= f(c) - \frac{f(c) - d}{2}
\]
\[
= \frac{f(c) + d}{2}
\]
\[
> \frac{d + d}{2}
\]
\[
= d
\]
so \((c - \delta, c + \delta) \cap B = \emptyset\). So either there exists \(x \in B \) with \(x \geq c + \delta \)
(in which case \(c \) is not an upper bound for \(B \)) or \(c - \delta \) is an upper bound for \(B \)
(in which case \(c \) is not the least upper bound for \(B \)); in either case, \(c \neq \sup B \), contradiction.
\[f(c) > d \implies \exists \delta > 0 \text{ s.t. } f(x) > d, \forall x \in (c-\delta, c+\delta) \]

\[(c-\delta, c+\delta) \cap B = \emptyset \implies \text{ either } \exists y \in [c+\delta, b] \cap B \]
\[\text{ or } B \subset [a, c-\delta] \]

in either case, \(c = \sup B \)
Since $f(c) \not< d$, $f(c) \not> d$, and the order is complete, $f(c) = d$. Since $f(a) < d$ and $f(b) > d$, $a \neq c \neq b$, so $c \in (a, b)$.
\[\square\]
\[x = 3 \cdot 1.2^3 \]

\[x/R = \{ [17], [23] \} \]

\[f : A \rightarrow B \]

\[\forall a \in A \quad \exists b \in B \text{ s.t. } f(a) = b \]

\[f \text{ onto } \Rightarrow \exists b \in B \quad \exists a \in A \text{ s.t. } f(a) = b \]

\[f \text{ 1-1 } \Rightarrow a \neq a' \Rightarrow f(a) \neq f(a') \]
Corollary 1. There exists $x \in \mathbb{R}$ such that $x^2 = 2$.

Proof. Let $f(x) = x^2$, for $x \in [0, 2]$. f is continuous (Why?). $f(0) = 0 < 2$ and $f(2) = 4 > 2$, so by the Intermediate Value Theorem, there exists $c \in (0, 2)$ such that $f(c) = 2$, i.e. such that $c^2 = 2$. \qed