Announcements

- PSI due Friday

Lon in bCourses

Econ 204 2021

Lecture 2

o marked slides

posted on class

website after

lectures

Outline

o, Cardi rality

- 1. Cardinality (cont.)
- 2. Algebraic Structures: Fields and Vector Spaces
- 3. Axioms for ${\bf R}$
- 4. Sup, Inf, and the Supremum Property
- 5. Intermediate Value Theorem

Definition 5. Two sets A, B are numerically equivalent (or have the same cardinality) if there is a bijection $f: A \to B$, that is, a function $f: A \to B$ that is 1-1 $(a \neq a' \Rightarrow f(a) \neq f(a'))$, and onto $(\forall b \in B \ \exists a \in A \ s.t. \ f(a) = b)$.

Example: $A = \{2, 4, 6, ..., 50\}$ is numerically equivalent to the set $\{1, 2, ..., 25\}$ under the function f(n) = 2n.

 $B = \{1, 4, 9, 16, 25, 36, 49 \ldots\} = \{n^2 : n \in \mathbb{N}\}$ is numerically equivalent to \mathbb{N} .

A set is either finite or infinite. A set is *finite* if it is numerically equivalent to $\{1,\ldots,n\}$ for some n. A set that is not finite is *infinite*.

In particular, $A = \{2, 4, 6, \dots, 50\}$ is finite, $B = \{1, 4, 9, 16, 25, 36, 49 \dots\}$ is infinite.

A set is *countable* if it is numerically equivalent to the set of natural numbers $N = \{1, 2, 3, ...\}$. An infinite set that is not countable is called *uncountable*.

Example: The set of integers \mathbf{Z} is countable.

$$Z = \{0, 1, -1, 2, -2, \ldots\}$$

Define $f: \mathbb{N} \to \mathbb{Z}$ by

$$f(1) = 0$$

$$f(2) = 1$$

$$f(3) = -1$$

$$\vdots$$

$$f(n) = (-1)^{n} \left\lfloor \frac{n}{2} \right\rfloor$$

where $\lfloor x \rfloor$ is the greatest integer less than or equal to x. It is straightforward to verify that f is one-to-one and onto.

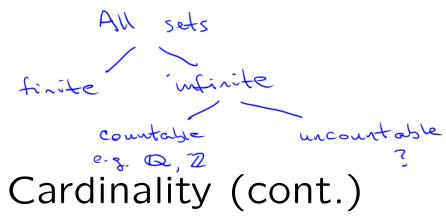
Theorem 5. The set of rational numbers Q is countable.

"Picture Proof":

$$\mathbf{Q} = \left\{ \frac{m}{n} : m, n \in \mathbf{Z}, n \neq 0 \right\}$$
$$= \left\{ \frac{m}{n} : m \in \mathbf{Z}, n \in \mathbf{N} \right\}$$

Go back and forth on upward-sloping diagonals, omitting the

ę


•

•

repeats:

$$f(1) = 0$$
 $f(2) = 1$
 $f(3) = \frac{1}{2}$
 $f(4) = -1$

 $f: \mathbf{N} \to \mathbf{Q}$, f is one-to-one and onto.

Notation: Given a set A, 2^A is the set of all subsets of A. This is the "power set" of A, also denoted P(A).

Important example of an uncountable set:

Theorem 1 (Cantor). 2^N , the set of all subsets of N, is not countable.

Proof. Suppose $2^{\mathbb{N}}$ is countable. Then there is a bijection f: $N \to 2^N$. Let $A_m = f(m)$. We create an infinite matrix, whose

Hme D

 $(m,n)^{th}$ entry is 1 if $n \in A_m$, 0 otherwise:

			\mathbf{N}					
		1	2	3	4	5		
$A_1 =$: Ø	0	0	0	0	0		
$A_2 =$: {1}	1	0	0	0	0	(ows =	
$2^{N} A_{3} =$: {1,2,3}	1	1	1	0	0	indicator function	£
$A_4 =$	· N	1	1	1	1	1	set Am	
$A_5 =$: 2N	0	1	O :	1	0		
•		'	•	•	•	,		

Now, on the main diagonal, change all the 0s to 1s and vice

versa:

					${f N}$				
				1	2	3	4	5	• • •
fci) =	A_1	=	Ø	1	0	0	0	0	• • •
F(2) =			{1}	1	1	0	0	0	• • •
$2^{\mathbf{N}}$	A_3	=	{1,2,3}	1	1	0	0	0	• • •
	A_{4}	=	${f N}$	1	1	1	0	1	• • •
	A_5	= :	2N	0	1 :	O :	1	1	
		:		:	:	:	:	:	

formalizing:

Let

$$t_{mn} = \begin{cases} 1 & \text{if } n \in A_m \\ 0 & \text{if } n \notin A_m \end{cases} \qquad \text{whicator function}$$

Let $A = \{ m \in \mathbb{N} : t_{mm} = 0 \}.$

$$m \in A \Leftrightarrow t_{mm} = 0$$
 $\Leftrightarrow m \not\in A_m$
 $1 \in A \Leftrightarrow 1 \not\in A_1 \text{ so } A \neq A_1$
 $2 \in A \Leftrightarrow 2 \not\in A_2 \text{ so } A \neq A_2$
 \vdots
 $m \in A \Leftrightarrow m \not\in A_m \text{ so } A \neq A_m \quad \forall \neg \in \bowtie$

Therefore, $A \neq f(m)$ for any m, so f is not onto, contradiction.

Some Additional Facts About Cardinality

Recall we let |A| denote the cardinality of a set A.

- if A is numerically equivalent to $\{1,\ldots,n\}$ for some $n\in \mathbb{N}$, then |A|=n.
- A and B are numerically equivalent if and only if |A| = |B|
- if |A| = n and A is a proper subset of B (that is, $A \subseteq B$ and $A \neq B$) then |A| < |B|

ullet if A is countable and B is uncountable, then

$$n < |A| < |B| \quad \forall n \in \mathbf{N}$$

- if $A \subseteq B$ then $|A| \le |B|$
- if $r: A \to B$ is 1-1, then $|A| \leq |B|$
- ullet if B is countable and $A\subseteq B$, then A is at most countable, that is, A is either empty, finite, or countable
- ullet if $r:A\to B$ is 1-1 and B is countable, then A is at most countable

Algebraic Structures: Fields

Definition 1. A field $\mathcal{F} = (F, +, \cdot)$ is a 3-tuple consisting of a set F and two binary operations $+, \cdot : F \times F \to F$ such that

1. Associativity of +:

$$\forall \alpha, \beta, \gamma \in F, \ (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

2. Commutativity of +:

$$\forall \alpha, \beta \in F, \ \alpha + \beta = \beta + \alpha$$

3. Existence of additive identity:

 $\exists !0 \in F \text{ s.t. } \forall \alpha \in F, \ \alpha + 0 = 0 + \alpha = \alpha$

4. Existence of additive inverse:

$$\forall \alpha \in F \ \exists ! (-\alpha) \in F \ s.t. \ \alpha + (-\alpha) = (-\alpha) + \alpha = 0$$
 Define $\alpha - \beta = \alpha + (-\beta)$

5. Associativity of ·:

$$\forall \alpha, \beta, \gamma \in F, \ (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

6. Commutativity of ·:

$$\forall \alpha, \beta \in F, \ \alpha \cdot \beta = \beta \cdot \alpha$$

7. Existence of multiplicative identity:

$$\exists ! 1 \in F \text{ s.t. } 1 \neq 0 \text{ and } \forall \alpha \in F, \ \alpha \cdot 1 = 1 \cdot \alpha = \alpha$$

8. Existence of multiplicative inverse:

$$\forall \alpha \in F \text{ s.t. } \alpha \neq 0 \text{ } \exists ! \alpha^{-1} \in F \text{ s.t. } \alpha \cdot \alpha^{-1} = \alpha^{-1} \cdot \alpha = 1$$
 Define $\frac{\alpha}{\beta} = \alpha \beta^{-1}$. ($\beta \neq \circ$)

9. Distributivity of multiplication over addition:

$$\forall \alpha, \beta, \gamma \in F, \ \alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

Fields

Examples:

Complex numbers
$$\bullet \mathbf{C} = \{x+iy: x,y \in \mathbf{R}\}. \ i^2 = -1, \text{ so}$$
 (standard + , ·)

$$(x+iy)(w+iz) = xw+ixz+iwy+i^2yz = (xw-yz)+i(xz+wy)$$

standard + ...

• Q: $Q \subset R$, $Q \neq R$. Q is closed under +, , taking additive and multiplicative inverses; the field axioms are inherited from the field axioms on \mathbf{R} , so \mathbf{Q} is a field.

+ . o standard in R

min + m frew • N is not a field: no additive identity.

+ . standard in TR

- \mathbf{Z} is not a field; no multiplicative inverse for 2. $\mathbf{Z} \in \mathbb{Z}$ 22=1
- $Q(\sqrt{2})$, the smallest field containing $Q \cup \{\sqrt{2}\}$. Take Q, add $\sqrt{2}$, and close up under +, \cdot , taking additive and multiplicative inverses. One can show

$$\mathbf{Q}(\sqrt{2}) = \{q + r\sqrt{2} : q, r \in \mathbf{Q}\}\$$

For example,

$$(q + r\sqrt{2})^{-1} = \frac{q}{q^2 - 2r^2} - \frac{r}{q^2 - 2r^2}\sqrt{2}$$

• A finite field: $F_2 = (\{0,1\},+,\cdot)$ where we define 0+0=0 $0\cdot 0=0$ 0+1=1+0=1 $0\cdot 1=1$ $0\cdot 1=1$ $1\cdot 1=1$ ("Arithmetic mod 2")

Vector Spaces / (F,*,*)

Definition 2. A vector space is a 4-tuple $(V, F, +, \cdot)$ where Vis a set of elements, called vectors, F is a field, + is a binary operation on V called vector addition, and $\cdot: F \times V \to V$ is called scalar multiplication, satisfying

1. Associativity of +:

$$\forall x, y, z \in V, (x + y) + z = x + (y + z)$$

2. Commutativity of +:

$$\forall x, y \in V, \ x + y = y + x$$

3. Existence of vector additive identity:

$$\exists ! 0 \in V \text{ s.t. } \forall x \in V, \ x + 0 = 0 + x = x$$

4. Existence of vector additive inverse:

$$\forall x \in V \ \exists ! (-x) \in V \ s.t. \ x + (-x) = (-x) + x = 0$$

Define $x - y$ to be $x + (-y)$.

5. Distributivity of scalar multiplication over vector addition:

$$\forall \alpha \in F, x, y \in V, \ \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$$

6. Distributivity of scalar multiplication over scalar addition:

$$\forall \alpha, \beta \in F, x \in V \quad (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$$

7. Associativity of ·:

$$\forall \alpha, \beta \in F, x \in V \quad (\alpha \cdot \beta) \cdot x = \alpha \cdot (\beta \cdot x)$$

8. Multiplicative identity:

$$\forall x \in V \quad 1 \cdot x = x$$

(Note that 1 is the multiplicative identity in F; $1 \notin V$)

Vector Spaces

Examples:

- 1. \mathbb{R}^n over \mathbb{R} .
- 2. \mathbf{R} is a vector space over \mathbf{Q} :

(scalar multiplication) $q \cdot r = qr$ (product in R)

 ${f R}$ is not finite-dimensional over ${f Q}$, i.e. ${f R}$ is not ${f Q}^n$ for any $n\in {f N}.$

3. \mathbf{R} is a vector space over \mathbf{R} .

4. $Q(\sqrt{2})$ is a vector space over Q. As a vector space, it is Q^2 ; as a field, you need to take the funny field multiplication.

5. $Q(\sqrt[3]{2})$, as a vector space over Q, is Q^3 .

5.
$$Q(\sqrt[3]{2})$$
, as a vector space over Q , is Q^3 .

 $Q(\sqrt[3]{2})$, as a vector space over Q , is Q^3 .

6. $(F_2)^n$ is a finite vector space over F_2 .

- 7. C([0,1]), the space of all continuous real-valued functions on [0,1], is a vector space over \mathbf{R} .
 - vector addition: $f, g \in C([E_0, 1])$ $(f+g)(t) = f(t) + g(t) \qquad \forall t \in [0,1]$

Note we define the function f+g by specifying what value it takes for each $t \in [0,1]$.

• scalar multiplication: «€TR, +€ C ([0,1])

$$(\alpha f)(t) = \alpha(f(t)) \qquad \forall t \in [0,1]$$

- vector additive identity: 0 is the function which is identically zero: 0(t) = 0 for all $t \in [0, 1]$.
- vector additive inverse:

$$(-f)(t) = -(f(t)) \qquad \forall t \in [0,1]$$

Axioms for R

- / 1. ${f R}$ is a field with the usual operations +, \cdot , additive identity 0, and multiplicative identity 1 0, and multiplicative identity 1.
 - 2. Order Axiom: There is a complete ordering \leq , i.e. \leq is reflexive, transitive, antisymmetric $(\alpha \leq \beta, \beta \leq \alpha \Rightarrow \alpha = \beta)$ with the property that with the property that

$$\forall \alpha, \beta \in \mathbf{R} \text{ either } \alpha \leq \beta \text{ or } \beta \leq \alpha$$
 (complete

The order is compatible with + and \cdot , i.e.

$$\forall \alpha, \beta, \gamma \in \mathbf{R} \left\{ \begin{array}{c} \alpha \leq \beta \ \Rightarrow \ \alpha + \gamma \leq \beta + \gamma \\ \alpha \leq \beta, 0 \leq \gamma \ \Rightarrow \ \alpha \gamma \leq \beta \gamma \end{array} \right. \\ \geq \beta \text{ means } \beta \leq \alpha. \ \alpha < \beta \text{ means } \alpha \leq \beta \text{ and } \alpha \neq \beta.$$

Completeness Axiom

3. Completeness Axiom: Suppose $L, H \subseteq \mathbf{R}, L \neq \emptyset \neq H$ satisfy

$$\ell \le h \quad \forall \ell \in L, h \in H$$

Then

$$\exists \alpha \in \mathbf{R} \text{ s.t. } \ell \leq \alpha \leq h \quad \forall \ell \in L, h \in H$$

$$\begin{array}{ccc}
 & \alpha \\
 & \downarrow & H \\
 & ---- & & \cdot & (-----)
\end{array}$$

The Completeness Axiom differentiates ${\bf R}$ from ${\bf Q}$: ${\bf Q}$ satisfies all the axioms for ${\bf R}$ except the Completeness Axiom.

Sups, Infs, and the Supremum Property

Definition 3. Suppose $X \subseteq \mathbf{R}$. We say u is an upper bound for X if

$$x \le u \ \forall x \in X$$

and ℓ is a lower bound for X if

C.R

$$\ell \le x \ \forall x \in X$$

X is bounded above if there is an upper bound for X, and bounded below if there is a lower bound for X.

CR

Definition 4. Suppose X is bounded above. The supremum of X, written $\sup X$, is the least upper bound for X, i.e. $\sup X \in \mathbb{R}$ satisfies

 $\sup X \ge x \quad \forall x \in X \text{ (sup } X \text{ is an upper bound)}$

 $\forall y < \sup X \ \exists x \in X \ s.t. \ x > y \ (there is no smaller upper bound)$

Analogously, suppose X is bounded below. The infimum of X, written inf X, is the greatest lower bound for X, i.e. inf X satisfies

 $\inf X \leq x \quad \forall x \in X \text{ (inf } X \text{ is a lower bound)}$

 $\forall y > \inf X \ \exists x \in X \ s.t. \ x < y \ (there is no greater lower bound)$

If X is not bounded above, write $\sup X = \infty$. If X is not bounded below, write $\inf X = -\infty$. Convention: $\sup \emptyset = -\infty$, $\inf \emptyset = +\infty$.

The Supremum Property

The Supremum Property: Every nonempty set of real numbers that is bounded above has a supremum, which is a real number. Every nonempty set of real numbers that is bounded below has an infimum, which is a real number.

Note: $\sup X$ need not be an element of X. For example, $\sup(0,1)=1\not\in(0,1)$.

The Supremum Property

Theorem 2 (Theorem 6.8, plus . . .). The Supremum Property and the Completeness Axiom are equivalent.

Proof. Assume the Completeness Axiom. Let $X \subseteq \mathbf{R}$ be a nonempty set that is bounded above. Let U be the set of all upper bounds for X. Since X is bounded above, $U \neq \emptyset$. If $x \in X$ and $u \in U$, $x \leq u$ since u is an upper bound for X. So

$$x \le u \ \forall x \in X, u \in U$$

By the Completeness Axiom,

$$\exists \alpha \in \mathbf{R} \text{ s.t. } x \leq \alpha \leq u \quad \forall x \in X, u \in U$$

 α is an upper bound for X, and it is less than or equal to every other upper bound for X, so it is the least upper bound for X,

so $\sup X = \alpha \in \mathbf{R}$. The case in which X is bounded below is similar. Thus, the Supremum Property holds.

Conversely, assume the Supremum Property. Suppose $L, H \subseteq \mathbf{R}$, $L \neq \emptyset \neq H$, and

$$\ell \le h \ \forall \ell \in L, h \in H$$

Since $L \neq \emptyset$ and L is bounded above (by any element of H), $\alpha = \sup L$ exists and is real. By the definition of supremum, α is an upper bound for L, so

$$\ell < \alpha \ \forall \ell \in L$$

Suppose $h \in H$. Then h is an upper bound for L, so by the definition of supremum, $\alpha \leq h$. Therefore, we have shown that

$$\ell \le \alpha \le h \ \forall \ell \in L, h \in H$$

so the Completeness Axiom holds.

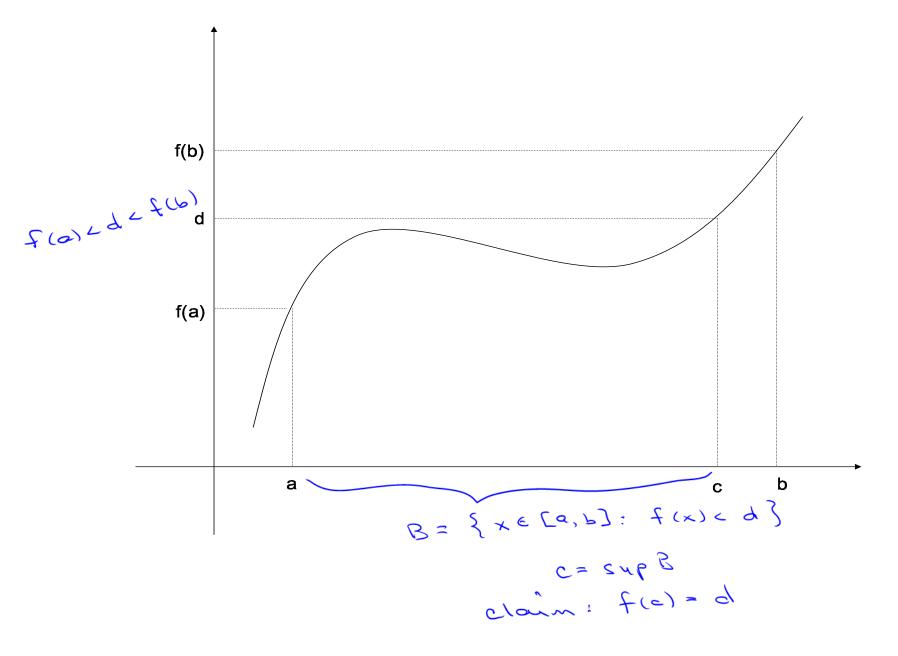
Archimedean Property

Theorem 3 (Archimedean Property, Theorem 6.10 + ...).

$$\forall x, y \in \mathbf{R}, y > 0 \ \exists n \in \mathbf{N} \ s.t. \ ny = \underbrace{(y + \dots + y)}_{n \ times} > x$$

Proof. Exercise. This is a nice exercise in proof by contradiction, using the Supremum Property. \Box

Intermediate Value Theorem


CTR

Theorem 4 (Intermediate Value Theorem). Suppose $f : [a,b] \to \mathbb{R}$ is continuous, and f(a) < d < f(b). Then there exists $c \in (a,b)$ such that f(c) = d.

Proof. Later, we will give a slick proof. Here, we give a barehands proof using the Supremum Property. Let

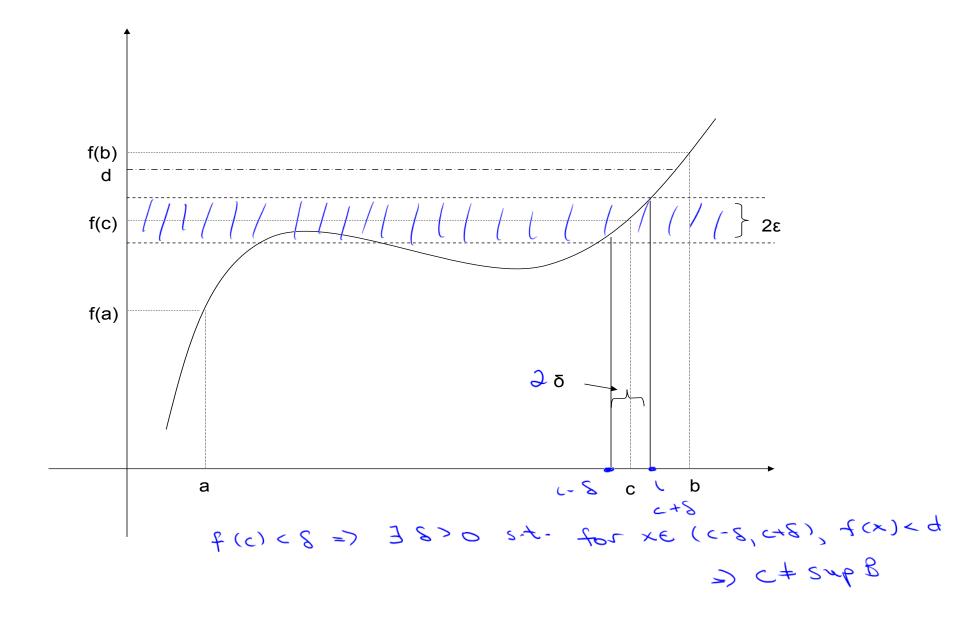
$$B = \{x \in [a, b] : f(x) < d\}$$

 $a \in B$, so $B \neq \emptyset$; $B \subseteq [a,b]$, so B is bounded above. By the Supremum Property, sup B exists and is real so let $c = \sup B$. Since $a \in B$, $c \geq a$. $B \subseteq [a,b]$, so $c \leq b$. Therefore, $c \in [a,b]$.

We claim that f(c)=d. If not, suppose f(c)< d. Then since f(b)>d, $c\neq b$, so c< b. Let $\varepsilon=\frac{d-f(c)}{2}>0$. Since f is continuous at c, there exists $\delta>0$ such that

$$|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

$$\Rightarrow f(x) < f(c) + \varepsilon$$


$$= f(c) + \frac{d - f(c)}{2}$$

$$= \frac{f(c) + d}{2}$$

$$< \frac{d + d}{2}$$

$$= d$$

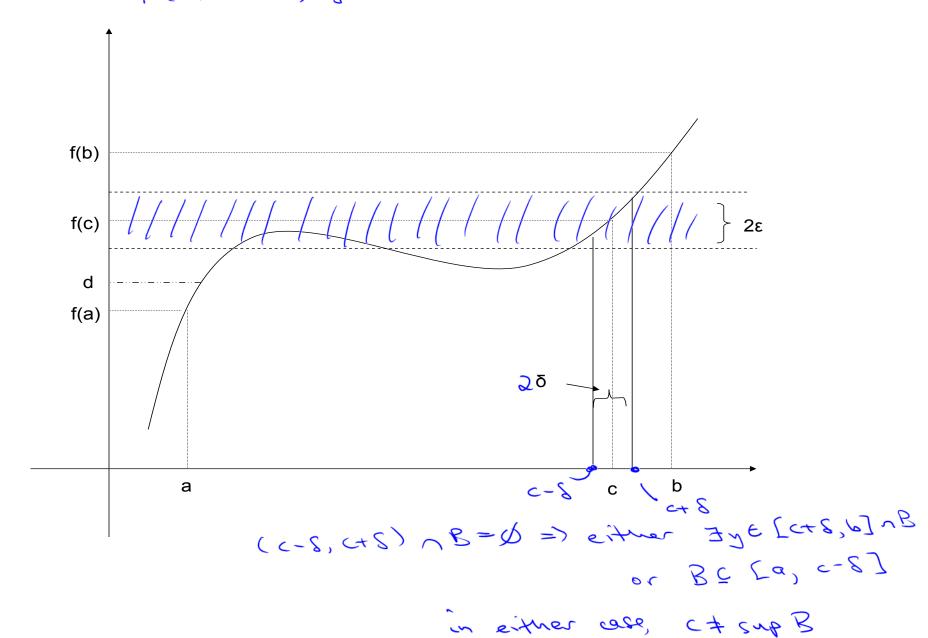
so $(c, c + \delta) \subseteq B$, so $c \neq \sup B$, contradiction.

Suppose f(c)>d. Then since f(a)< d, $a\neq c$, so c>a. Let $\varepsilon=\frac{f(c)-d}{2}>0$. Since f is continuous at c, there exists $\delta>0$ such that

$$|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

$$\Rightarrow f(x) > f(c) - \varepsilon$$

$$= f(c) - \frac{f(c) - d}{2}$$


$$= \frac{f(c) + d}{2}$$

$$> \frac{d + d}{2}$$

$$= d$$

so $(c-\delta,c+\delta)\cap B=\emptyset$. So either there exists $x\in B$ with $x\geq c+\delta$ (in which case c is not an upper bound for B) or $c-\delta$ is an upper bound for B (in which case c is not the least upper bound for B); in either case, $c\neq \sup B$, contradiction.

f(c)>d => 38>0 s.t. f(x)>d +xe(c-8, c+8)

Since $f(c) \not< d$, $f(c) \not> d$, and the order is complete, f(c) = d. Since f(a) < d and f(b) > d, $a \neq c \neq b$, so $c \in (a,b)$.

$$X = 31, 23$$
 $X = 217, 233$

$$f : A \rightarrow B$$
 $f : A \rightarrow B$
 $f :$

Corollary 1. There exists $x \in \mathbb{R}$ such that $x^2 = 2$.

Proof. Let $f(x) = x^2$, for $x \in [0,2]$. f is continuous (Why?). f(0) = 0 < 2 and f(2) = 4 > 2, so by the Intermediate Value Theorem, there exists $c \in (0,2)$ such that f(c) = 2, i.e. such that $c^2 = 2$.