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Open Covers
Definition 1. A collection of sets
U= {U)\ "\ E /\} c 74

in a metric space (X,d) is an open cover of A if Uy is open for
all A e \ and

UxenlUy 2 A

Notice that A may be finite, countably infinite, or uncountable.



Compactness

Definition 2. A set A in a metric space is compact if every open
cover of A contains a finite subcover of A. In other words, if
{Uy : X € A} is an open cover of A, there exist n € N and
A1, - ,An € N such that

AQU,\lu---UU,\n

This definition does not say “A has a finite open cover” (fortu-
nately, since this is vacuous...).

Instead for any arbitrary open cover you must specify a finite
subcover of this given open cover.



Compactness

Example: (0, 1] is not compact in EL. (L WX\ skandara wéw\—b)

To see this, let
1
U = {Um = (—,2> m e N} U Open v

m
T hen

UmENUm — (072) D) (07 1]

:_'_,5 /.l_/( s o~ @\?Q,J\ Ao ~JAN Q& (D\ \x



o (o) U,=(12)
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N U= (112, 2) .

Y U, = (1/3, 2)

Yu4 = (1/4, 2)



Given any finite subset {Umy,...,Um,} of U, let
m = max{mi,...,mp} > ©

T hen

1
Uy Uy = Uy = (5,2) 2 (0, 1]

So (0,1] is not compact.

What about [0,1]? This argument doesn't work...



Compactness

Example: [0,c0) is closed but not compact. (e~ W woPAn o ard asd

L C )

To see that [0,00) is not compact, let

U= {Un=(=1,m):meN} O )= o)

Given any finite subset n et > Us &)
{Uml,...,Umn} = /Z/L o pen CoNe
of U, let § (o, %)
o ¢ m=max{mq,...,mp} & x

Then



A= (o, c,cs)

/ \4 Aﬁ | \} >
I
—lF 1 2 /‘3 /‘4 5
\—TJ M
u,=-11H .
U, =(-1,2)
- —
U3 = (_173)



Compactness

Theorem 1 (Thm. 8.14). Every closed subset A of a compact
metric space (X,d) is compact.

Proof. Let {Uy : A € A} be an open cover of A. In order to use
the compactness of X, we need to produce an open cover of X.

There are two ways to do this:
U/ K oprr- g:./f\Cz_-« ﬁ\ deosed

A
/\/

UAU(X\A)
/\U{)\()}, U)\O:X\A

We choose the first path, and let

Uy =U,U(X\A) N e A






U’=U, U (X\A)

Uoted

X\P\ S RN /




Since A is closed, X \ A is open; since U, is open, SO is Ug.

Thenz € X ==z € Aorxe X\A. Ifxe A INeANst x €
Uy CU). If instead z € X \ A, then VA € A, z € U}. Therefore,
X C UpeaUy, so {Uj : A€ A} is an open cover of X.

Since X is compact, A c

I, A EASE X CUY U UUY
Then

acA = acX
= a € U}, for some i
= ac Uy U(X\A)
= a € Uy,



SO
AgU,\lu---UU,\n

Thus A is compact.



Compactness

closed # compact, but the converse is true: w~ oo Mo g poce

Theorem 2 (Thm. 8.15).If A is a compact subset of the metric
space (X,d), then A is closed.

Proof. Suppose by way of contradiction that A is not closed.
Then X \ A is not open, so we can find a point z € X \ A such
that, for every € > 0, AN B:(x) #= 0, and hence AN B:[x] # 0.

For n € N, let

2 iﬁ»ﬁl Asad

Un:X\Bl[x]
n e > O < x €N

R
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Each U, is open, and

UpeNUn = X'\ {z} 2 4

since x € A. Therefore, {U, : n € N} is an open cover for A.
Since A is compact,{torlere is a finite subcover {Upq,...,Un,}. Let
n = max{ni,...,ni}. Then

X\ Bilz] g
X\Bil[z] G=1,...,k)
"
k
Uj=1Un;
A
But AN Bi[z] #0, so AZ X \ Bi[z] = Uy, a contradiction which

proves that A is closed. [ ]
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Sequential Compactness

Definition 3. A set A in a metric space (X,d) is sequentially
compact if every sequence of elements of A contains a conver-
gent subsequence whose limit lies in A.
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I,

Sequential Compactness

Theorem 3 (Thms. 8.5, 8.11). A set A in a metric space (X, d)
iIs compact if and only if it is sequentially compact.

. Proof. Suppose A is compact. We will show that A is sequen-

tially compact.

If not, we can find a sequence {x,} of elements of A such that
no subsequence converges to any element of A. Recall that a is
a cluster point of the sequence {z,} means that

Ve >0 {n:zpn € Be(a)} is infinite

and this is equivalent to the statement that there is a subse-
quence {xp, } converging to a. Thus, no element a € A can be a
cluster point for {z,}, and hence

Ya c A 350, > 0 s.t. {n - In, € Bga(a)} is finite (1)

12



Then
{Be¢,(a) :a € A}

is an open cover of A (if A is uncountable, it will be an un-
countable open cover). Since A is compact, there is a finite
subcover

{Beal (a1)7 Ceey Bsam(am)} A C %&Q\(q‘\ \J ”-UEZQ%\LM)
Then
{n:xzy € A} A% X A VISP N
{n L2 € <B€a1(a1) U U Bsam(am))}
{n - I € B€a1 (a1)} U-.-- U {n LI € Bgam(am)}

so N is contained in a finite union of sets, each of which is finite
by Equation (1). Thus, N must be finite, a contradiction which
proves that A is sequentially compact.

Z
Nl



For the converse, see de |la Fuente.



Totally Bounded Sets

Definition 4. A set A in a metric space (X, d) is totally bounded
if, for every € > 0,

Jr1,...,2n € A s.t. A C U B:(x;)

Rocalhs AT X houndead § A p>0 aa IxeX
S.3g- /A\é R_.r:("‘)
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Totally Bounded Sets

c R

Example: Take A = [O,l]fwith the Euclidean metric. Given

1

e>0, letn > = Then we may take

\

= &2 1 2 n—1
Ll — —HL2 — —y..., Lpn_-1 —
n n n
Then [0,1] C UPZTB:().
\[A:’EO\.\X
E ( b I \ \; [\ \ 3—3—5
Lls oo A S S noN \



Totally Bounded Sets

Example: Consider X = [0, 1] with the discrete metric

)1 ifz#y
d(a:,y)—{ O ifz=y
X is not totally bounded. To see this, take ¢ = % Then for any
x, Be(x) = {x}, so given any finite set xq,...,zn,

U;,nle&?(xZ) — {xla s 7513n} Z [07 1]

However, X is bounded because X = B»(0).

oo nded P Aty bewadea
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Totally Bounded Sets

Note that any totally bounded set in a metric space (X,d) is
also bounded. To see this, let A C X be totally bounded. Then
dx1,...,xn € A such that A C Bi(xz1)U---U B1(xn). Let

M =1+d(z1,72) + -+ d(zp_1,Tn)
Then M < oo. Now fix a € A. We claim d(a,z1) < M. To
see this, notice that there is some nq € {1,...,n} for which
a € B1(xn,). Then

n-=\

d(a’7xna) + Z d(xkaxk—l—l)
k=1

IA

d(a,x1)

n—\

< 14+ ) dzg, zpy1)
h=1
= M

16






Totally Bounded Sets

Remark 4. Every compact subset of a metric space is totally
bounded:

(2> O
Fix € and consider the open cover

~

Us = {Be(a) 1 a € A}

If A is compact, then every open cover of A has a finite subcover:;
in particular, U must have a finite subcover, but this just says

that A is totally bounded.
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Compactness and Totally Bounded Sets

Theorem 5 (Thm. 8.16). Let A be a subset of a metric space
(X,d). Then A is compact if and only if it is complete and totally
bounded.

. Proof. Here is a sketch of the proof; see de la Fuente for details.

Compact implies totally bounded (Remark 4). Suppose {zn} is
a Cauchy sequence in A. Since A is compact, A is sequentially
compact, hence {z,} has a convergent subsequence z,, — a € A.
Since {x,} is Cauchy, z, — a (Why?), so A is complete.

- Conversely, suppose A is complete and totally bounded. Let

{xn} be a sequence in A. Because A is totally bounded, we
can extract a Cauchy subsequence {zn, } (why?). Because A
is complete, xp, — a for some a € A, which shows that A is
sequentially compact and hence compact. [ ]

19



Compact «<— C(Closed and Totally Bounded

Putting these together: <X~ resolke fram leckoes S

Corollary 1. Let A be a subset of a complete metric space (X.d).
Then A is compact if and only if A is closed and totally bounded.

(% Q) tomplats, ASK, en

A compact =

A closed and totally bounded

L4

A complete and totally bounded
A closed and totally bounded

A complete and totally bounded
A compact

20



Example: [0,1] is compact in El. (TR wiX~ skondord wmedre)

E" Qo M r\p_:‘{Q__J L"D \\1 RS O L od oA _\_Q,.\‘_@M\SHD % owﬁc&ec&
=> Lo \J\._) co J\-\Pq_c_'\(

Note: compact = closed and bounded, but converse need not

be true. > %\)J@k\% “Lovrnde d

E.g. [0, 1] with the discrete metric.
i/c’\-\x WA A Creee U U Ao 2. ond. Bouv~ded

Lok vt Al hourdad v Semgedt
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Heine-Borel Theorem - El

Theorem 6 (Thm. 8.19, Heine-Borel). If A C El, then A is
compact if and only if A is closed and bounded.

— Proof. Let A be a closed, bounded subset of R. Then A C [a, b]
for some interval [a,b]. Let {x,} be a sequence of elements of
[a,b]. By the Bolzano-Weierstrass Theorem, {z,} contains a
convergent subsequence with limit x € R. Since [a,b] is closed,
x € [a,b]. Thus, we have shown that [a,b] is sequentially com-
pact, hence compact. A is a closed subset of [a,b], hence A is

compact.

—=:Conversely, if A is compact, A is closed and bounded. [ ]

22



Heine-Borel T heorem - E"

Theorem 7 (Thm. 8.20, Heine-Borel). If A C E™, then A is
compact if and only if A is closed and bounded.

Proof. See de |la Fuente.

Example: The closed interval oL 5

[a, 0] ={rx e R" :a; <x; <b; foreachi=1,...,n}

is compact in E™ for any a,b € R".

a - (qlx"”‘?o\“)

(5 e 5 )

\5—
\J
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Continuous Images of Compact Sets

Theorem 8 (8.21). Let (X,d) and (Y,p) be metric spaces. If
f: X — Y is continuous and C is a compact subset of (X,d),
then f(C) is compact in (Y, p).

Proof. There is a proof in de |la Fuente using sequential com-
pactness. Here we give an alternative proof using directly the
open cover definition of compactness.

Let {Uy, : A € A} be an open cover of f(C). For each point
c € C, f(c) € f(C) so f(c) € Uy, for some A € A, that is,
ce f1 <U,\C). Thus the collection {f‘l (Uy) : N E /\} is a cover
of C; in addition, since f is continuous, each set f_]L (Uy) is

24



open in C, so {f‘l (Uy) : A€ /\} is an open cover of C. Since C
IS compact, there is a finite subcover

UHO0) (O
of C. Given z € f(C), there exi%té\c € C such that f(¢) = z, and

-

ce f1 (UAZ.) for some ¢, so x € Uy,. Thus, {Uy,,...,Uy,} is a
finite subcover of f(C), so f(C) is compact. [ ]

/}r\,S

S g

-\ !
579 A ?\k\\s xe/\
v : [~ e Qo= 6%
= A




Extreme Value Theorem

Corollary 2 (Thm. 8.22, Extreme Value Theorem). Let C be a
compact set in a metric space (X,d), and suppose f:C — R is
continuous. Then f is bounded on C and attains its minimum
and maximum on C.
c (R

Proof. f(C) is compact by Theorem 8.21, hence closed and
bounded. Let M = sup f(C); M < oo. Then Vm > 0 there
exists ym € f(C) such that

1
M—-——<ym<M
™m

SO ym — M and {ym} C f(C). Since f(C) is closed, M € f(C),
i.e. there exists ¢ € C such that f(¢) = M = sup f(C), so
f attains its maximum at c¢. The proof for the minimum is
similar. [ ]

25



Compactness and Uniform Continuity

Theorem 9 (Thm. 8.24). Let (X,d) and (Y, p) be metric spaces,
C a compact subset of X, and f . C — Y continuous. Then f is
uniformly continuous on C'.

Proof. Fix e > 0. We ighore X and consider f as defined on the
metric space (C,d). Given c e C, find 6(c¢) > 0 such that

z € C, d(z,c) < 25(c) = p(f(z), £(c)) < %
et
Ue = Bj(py(©)
Then
{Uec:ce C}

26



IS an open cover of C. Since C is compact, there is a finite
subcover

\Xec.

“

v

{UC]_7“'7UCTL} C, &

\

Let
0 = min{d(c1),...,0(cn)} > ©

Given z,y € C with d(z,y) < 4, note that = € U, for some
i€{1,...,n}, so d(x,c;) < d(c;).

d(y, c;) d(y, x) + d(z, ¢;)
o+ 6(¢;)

6(ci) + d(c;)
26(c;)

IAN A IA



SO

pU@)IW) < p(@), () +p(f (). S W)
=373

which proves that f is umformly continuous.
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