- corrected PS 3
posted



## Econ 2042021

Lecture 8

Outline

1. Bases
2. Linear Transformations
3. Isomorphisms

## Linear Combinations and Spans

Definition 1. Let $X$ be a vector space over a field $F$. A linear combination of $x_{1}, \ldots, x_{n} \in X$ is a vector of the form

$$
y=\sum_{i=1}^{n} \alpha_{i} x_{i} \text { where } \alpha_{1}, \ldots, \alpha_{n} \in F
$$

$\alpha_{i}$ is the coefficient of $x_{i}$ in the linear combination.
If $V \subseteq X$, the span of $V$, denoted span $V$, is the set of all linear combinations of elements of $V$.

A set $V \subseteq X$ spans $X$ if $\operatorname{span} V=X$.

## Linear Dependence and Independence

Definition 2. A set $V \subseteq X$ is linearly dependent if there exist $v_{1}, \ldots, v_{n} \in V$ and $\alpha_{1}, \ldots, \alpha_{n} \in F$ not all zero such that

$$
\sum_{i=1}^{n} \alpha_{i} v_{i}=0
$$

A set $V \subseteq X$ is linearly independent if it is not linearly dependent.

Thus $V \subseteq X$ is linearly independent if and only if

$$
\sum_{i=1}^{n} \alpha_{i} v_{i}=0, \quad v_{i} \in V \forall i \Rightarrow \alpha_{i}=0 \forall i
$$

Bases
Definition 3. A Hame basis (often just called a basis) of a vector space $X$ is a linearly independent set of vectors in $X$ that spans $X$.

Example: $\{(1,0),(0,1)\}$ is a basis for $\mathbf{R}^{2}$ (this is the standard basis).

$$
\begin{aligned}
& \alpha, \beta \in \mathbb{R}: \\
& \quad \alpha(1,0)+\beta(0,1)=(\alpha, \beta)
\end{aligned}
$$

Example, cont: $\{(1,1),(-1,1)\}$ is another basis for $\mathbf{R}^{2}$ :

$$
\begin{aligned}
\text { Suppose }(x, y) & =\alpha(1,1)+\beta(-1,1) \text { for some } \alpha, \beta \in \mathbf{R} \\
x & =\alpha-\beta \\
y & =\alpha+\beta \\
x+y & =2 \alpha \\
\Rightarrow \alpha & =\frac{x+y}{2} \\
y-x & =2 \beta \\
\Rightarrow \beta & =\frac{y-x}{2} \\
(x, y) & =\frac{x+y)}{2}(1,1)+\frac{y-x}{2}(-1,1)
\end{aligned}
$$

Since $(x, y)$ is an arbitrary element of $\mathbf{R}^{2},\{(1,1),(-1,1)\}$ spans $\mathbf{R}^{2}$. If $(x, y)=(0,0)$,

$$
\alpha=\frac{0+0}{2}=0, \quad \beta=\frac{0-0}{2}=0
$$

so the coefficients are all zero, so $\{(1,1),(-1,1)\}$ is linearly independent. Since it is linearly independent and spans $\mathbf{R}^{2}$, it is a basis.

Example: $\{(1,0,0),(0,1,0)\}$ is not a basis of $\mathbf{R}^{3}$, because it does not span $R^{3}$. $(x, y, z)$ s.t. $z \neq 0$


Example: $\{(1,0),(0,1),(1,1)\}$ is not a basis for $\mathbf{R}^{2}$.

$$
1(1,0)+1(0,1)+(-1)(1,1)=(0,0)
$$

so the set is not linearly independent.

$$
\begin{array}{r}
y=\sum_{i=1}^{n} \alpha_{i} v_{i} \text { for some } v_{1, \ldots,}, v_{n} \in V, \\
\\
\\
\quad \alpha_{1}, \ldots, \alpha_{n} \in F, \\
\text { Bases }
\end{array} \quad \text { some } n \in \infty
$$

Theorem 1 (Chm. 1.2'). Let $V$ be a Hame basis for $X$. Then every vector $x \in X$ has a unique representation as a linear combnation of a finite number of elements of $V$ (with all coefficients nonzero).*

Proof. Let $x \in X$. Since $V$ spans $X$, we can write

$$
x=\sum_{s \in S_{1}} \alpha_{s} v_{s}
$$

where $S_{1}$ is finite, $\alpha_{s} \in F, \alpha_{s} \neq 0$, and $v_{s} \in V$ for each $s \in S_{1}$. Now, suppose

$$
x=\sum_{s \in S_{1}} \alpha_{s} v_{s}=\sum_{s \in S_{2}} \beta_{s} v_{s}
$$


where $S_{2}$ is finite, $\beta_{s} \in F, \beta_{s} \neq 0$, and $v_{s} \in V$ for each $s \in S_{2}$. Let $S=S_{1} \cup S_{2}$, and define

$$
\begin{array}{lll}
\alpha_{s}=0 & \text { for } & s \in S_{2} \backslash S_{1} \\
\beta_{s}=0 & \text { for } & s \in S_{1} \backslash S_{2}
\end{array}
$$

Then

$$
\begin{aligned}
0 & =x-x \\
& =\sum_{s \in S_{1}} \alpha_{s} v_{s}-\sum_{s \in S_{2}} \beta_{s} v_{s} \\
& =\sum_{s \in S} \alpha_{s} v_{s}-\sum_{s \in S} \beta_{s} v_{s} \\
& =\sum_{s \in S}\left(\alpha_{s}-\beta_{s}\right) v_{s}
\end{aligned}
$$

Since $V$ is linearly independent, we must have $\alpha_{s}-\beta_{s}=0$, so $\alpha_{s}=\beta_{s}$, for all $s \in S$.

$$
s \in S_{1} \Leftrightarrow \alpha_{s} \neq 0 \Leftrightarrow \beta_{s} \neq 0 \Leftrightarrow s \in S_{2}
$$

so $S_{1}=S_{2}$ and $\alpha_{s}=\beta_{s}$ for $s \in S_{1}=S_{2}$, so the representation is unique.

## Bases

Theorem 2. Every vector space has a Hamel basis.

Proof. The proof uses the Axiom of Choice. Indeed, the theorem is equivalent to the Axiom of Choice.

## Bases

A closely related result, from which you can derive the previous result, shows that any linearly independent set $V$ in a vector space $X$ can be extended to a basis of $X$.

Theorem 3. If $X$ is a vector space and $V \subseteq X$ is linearly independent, then there exists a linearly independent set $W \subseteq X$ such that

$$
V \subseteq W \subseteq \operatorname{span} W=X
$$

## Bases

Theorem 4. Any two Hamel bases of a vector space $X$ have the same cardinality (are numerically equivalent).

Proof. The proof depends on the so-called Exchange Lemma, whose idea we sketch. Suppose that $V=\left\{v_{\lambda}: \lambda \in \Lambda\right\}$ and $W=\left\{w_{\gamma}: \gamma \in \Gamma\right\}$ are Hamel bases of $X$. Remove one vector $v_{\lambda_{0}}$ from $V$, so that it no longer spans (if it did still span, then $v_{\lambda_{0}}$ would be a linear combination of other elements of $V$, and $V$ would not be linearly independent). If $w_{\gamma} \in \operatorname{span}\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right)$ for every $\gamma \in \Gamma$, then since $W$ spans, $V \backslash\left\{v_{\lambda_{0}}\right\}$ would also span, contradiction. Thus, we can choose $\gamma_{0} \in \Gamma$ such that

$$
w_{\gamma_{0}} \notin \operatorname{span}\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right)
$$

Because $w_{\gamma_{0}} \in \operatorname{span} V$, we can write

$$
w_{\gamma_{0}}=\sum_{i=0}^{n} \alpha_{i} v_{\lambda_{i}}
$$

where $\alpha_{0}$, the coefficient of $v_{\lambda_{0}}$, is not zero (if it were, then we would have $w_{\gamma_{0}} \in \operatorname{span}\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right)$ ). Since $\alpha_{0} \neq 0$, we can solve for $v_{\lambda_{0}}$ as a linear combination of $w_{\gamma_{0}}$ and $v_{\lambda_{1}}, \ldots, v_{\lambda_{n}}$, so

$$
\begin{aligned}
& \operatorname{span}\left(\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right) \cup\left\{w_{\gamma_{0}}\right\}\right) \partial v_{\lambda_{0}} \\
& \left.\supseteq \operatorname{span} V=\operatorname{span}\left(\left(V \cup\left\{v_{\lambda_{0}}\right\}\right) \cup \imath_{\lambda_{0}}\right\}\right) \\
& =X
\end{aligned}
$$

so

$$
\left(\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right) \cup\left\{w_{\gamma_{0}}\right\}\right)
$$

spans $X$. From the fact that $w_{\gamma_{0}} \notin \operatorname{span}\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right)$ one can
show that

$$
\left(\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right) \cup\left\{w_{\gamma_{0}}\right\}\right)
$$

is linearly independent, so it is a basis of $X$. Repeat this process to exchange every element of $V$ with an element of $W$ (when $V$ is uncountable, this is done by a process called transfinite induction). At the end, we obtain a bijection from $V$ to $W$, so that $V$ and $W$ are numerically equivalent.

Dimension

Definition 4. The dimension of a vector space $X$, denoted $\operatorname{dim} X$, is the cardinality of any basis of $X$.

For $V \subseteq X,|V|$ denotes the cardinality of the set $V$.

- If $\operatorname{din} X=n$ for some $n \in \mathbb{N}$, $X$ is finite -dimensional.
otherwise, $X$ is infinite-dimensional.


## Dimension

Example: The set of all $m \times n$ real-valued matrices is a vector space over $\mathbf{R}$. A basis is given by

$$
\left\{E_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \quad E_{i j} \quad m \times n \text { matrix }
$$

where
in matrix E ${ }^{\text {the }}$ entry $\left.\quad\left(E_{i j}\right)_{\text {kl }}\right)= \begin{cases}1 & \text { if } k=i \text { and } \ell=j \\ 0 & \text { otherwise. }\end{cases}$
The dimension of the vector space of $m \times n$ matrices is $m n$.

$$
\sum_{i j}=\quad i\left(\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & \cdots \\
\vdots & - & \cdots & \cdots & \vdots \\
0 & \cdots & \cdots & 0 \\
\vdots & \cdots & \ddots & & \vdots \\
0 & \cdots & \vdots & \cdots & 0
\end{array}\right)
$$

Dimension and Dependence
Theorem 5 (Chm. 1.4). Suppose $\operatorname{dim} X=n \in \mathbf{N}$. If $V \subseteq X$ and $|V|>n$, then $V$ is linearly dependent.

If not, $V$ is linearly independent, so $V$ an be extended to a basis $\omega$ of $X$, and

$$
V \subseteq W \Rightarrow n<|V| \leq|\omega|
$$

Contradiction.

Dimension and Dependence
Theorem 6 (Thm. 1.5'). Suppose $\operatorname{dim} X=n \in \mathbf{N}, V \subseteq X$, and $|V|=n$.

- If $V$ is linearly independent, then $V$ spans $X$, so $V$ is a Hame basis.
- If $V$ spans $X$, then $V$ is linearly independent, so $V$ is a Hame basis.
(1) Otherwise, extend $V$ to a basis $w$ of $X$, with $V \neq \omega$, so $|W|>W V=n$ contradiction.
(2) Otherwise, choose $V^{\prime} \notin V$ a basis for $X$, and $\left|V^{\prime}\right|<|V|=n$
contradiction.

Linear Transformations

Definition 5. Let $X$ and $Y$ be two vector spaces over the field $F$. We say $T: X \rightarrow Y$ is a linear transformation if

$$
\begin{gathered}
T(\underbrace{\alpha_{1} x_{1}+\alpha_{2} x_{2}}_{x \in \mathcal{L}})=\alpha_{1} T\left(x_{1}\right)+\alpha_{2} T\left(x_{2}\right) \\
\underbrace{\forall x_{1}, x_{2}}_{\substack{ \\
\alpha_{1}+\alpha_{\alpha} y_{2}}} \in \quad \in X, \alpha_{1}, \alpha_{2} \in F \\
y_{1}=T\left(x_{1}\right) \\
y_{2}=T\left(x_{2}\right)
\end{gathered}
$$

Let $L(X, Y)$ denote the set of all linear transformations from $X$ to $Y$.

Equivalently:

$$
\begin{aligned}
& \cdot T(\alpha x)=\alpha T(x) \quad \forall \alpha \in F, \forall x \in X \\
& \cdot T\left(x_{1}+x_{2}\right)=T\left(x_{1}\right)+T\left(x_{2}\right) \quad \forall x_{1}, x_{2} \epsilon
\end{aligned}
$$

? Define $\quad x: L(x, y) \times L(x, y) \rightarrow L(x, y)$

$$
\therefore: E x L(x, y) \rightarrow L(x, y)
$$

Linear Transformations
Theorem 7. $L(X, Y)$ is a vector space over $F$.

Proof. First, define linear combinations in $L(X, Y)$ as follows.
For $T_{1}, T_{2} \in L(X, Y)$ and $\alpha, \beta \in F$, define $\alpha T_{1}+\beta T_{2}$ by

$$
\left(\alpha T_{1}+\beta T_{2}\right)(x)=\alpha T_{1}(x)+\beta T_{2}(x)
$$

We need to show that $\alpha T_{1}+\beta T_{2} \in L(X, Y)$.

$$
\begin{aligned}
& \left(\alpha T_{1}+\beta T_{2}\right)\left(\gamma x_{1}+\delta x_{2}\right) \\
& \quad=\alpha T_{1}\left(\gamma x_{1}+\delta x_{2}\right)+\beta T_{2}\left(\gamma x_{1}+\delta x_{2}\right) \quad \text { (definition) } \\
& =\alpha\left(\gamma T_{1}\left(x_{1}\right)+\delta T_{1}\left(x_{2}\right)\right)+\beta\left(\gamma T_{2}\left(x_{1}\right)+\delta T_{2}\left(x_{2}\right)\right)\left(T_{1} T_{2}\right. \text { linear) } \\
& =\gamma\left(\alpha T_{1}\left(x_{1}\right)+\beta T_{2}\left(x_{1}\right)\right)+\delta\left(\alpha T_{1}\left(x_{2}\right)+\beta T_{2}\left(x_{2}\right)\right) \text { (collect terms) } \\
& =\gamma\left(\alpha T_{1}+\beta T_{2}\right)\left(x_{1}\right)+\delta\left(\alpha T_{1}+\beta T_{2}\right)\left(x_{2}\right) \text { (definition again) }
\end{aligned}
$$

so $\alpha T_{1}+\beta T_{2} \in L(X, Y)$.

The rest of the proof involves straightforward checking of the vector space axioms.

## Compositions of Linear Transformations

$X, Y, Z$ vector spaces over same field $F$ Given $R \in L(X, Y)$ and $S \in L(Y, Z), S \circ R: X \rightarrow Z$. We will show that $S \circ R \in L(X, Z)$, that is, the composition of two linear transformations is linear.

$$
\begin{aligned}
(S \circ R)\left(\alpha x_{1}+\beta x_{2}\right) & \left.=S\left(R\left(\alpha x_{1}+\beta x_{2}\right)\right) \quad \text { (def of } S \circ R\right) \\
& =S\left(\alpha R\left(x_{1}\right)+\beta R\left(x_{2}\right)\right) \quad(R \text { linear) } \\
& =\alpha S\left(R\left(x_{1}\right)\right)+\beta S\left(R\left(x_{2}\right)\right) \quad(S \text { linear) } \\
& =\alpha(S \circ R)\left(x_{1}\right)+\beta(S \circ R)\left(x_{2}\right) \quad(\text { defu of } \\
R \in L(X, Z) . & \text { CoR) }
\end{aligned}
$$

so $S \circ R \in L(X, Z)$.

Kernel and Rank
Definition 6. Let $T \in L(X, Y)$.

- The image of $T$ is $\operatorname{Im} T=T(X) \subseteq Y$
- Can show In $T$ is a vector subspace of $Y$
- The kernel of $T$ is $\operatorname{ker} T=\{x \in X: T(x)=0\}$ (null space of $T$ )
- The rank of $T$ is $\operatorname{Rank} T=\operatorname{dim}(\operatorname{Im} T)$

Recall: $\omega \subseteq X$ is a vector subspace if it is a vector space over $F$ under $t$, - from $X$

- $W \subseteq X, W \neq \varnothing$ is a vector subspace 17 $\Leftrightarrow \forall w, \omega_{a} \in W, \forall \alpha, \beta \in F$, $\alpha \omega_{1}+\beta w_{2} \in \omega$

Rank-Nullity Theorem
Theorem 8 (Thms. 2.9, 2.7, 2.6: The Rank-Nullity Theorem). Let $X$ be a finite-dimensional vector space, $T \in L(X, Y)$. Then lm $T$ and jer $T$ are vector subspaces of $Y$ and $X$ respectively, and

$$
\operatorname{dim} X=\underbrace{\operatorname{dim} \operatorname{ker} T}_{\text {nullity of } T}+\operatorname{Rank} T
$$

Sketch: Show ImT, bert $T$ are vector subspaces - take $\left\{V_{,}, . ., v_{k}\right\}$ a basis for berT - extend to $\left\{V_{1}, \ldots, V_{K}, w_{1}, \ldots, w r\right.$ a basis for $X$ - Show $\left\{T\left(w_{1}\right), \ldots, T\left(\omega_{r}\right)\right\}$ is a basis for InT

## Kernel and Rank

Theorem 9 (Thm. 2.13). $T \in L(X, Y)$ is one-to-one if and only if $\operatorname{ker} T=\{0\}$.
$\Rightarrow$ Proof. Suppose $T$ is one-to-one. Suppose $x \in \operatorname{ker} T$. Then $T(x)=0$. But since $T$ is linear, $T(0)=T(0 \cdot 0)=0 \cdot T(0)=0$. Since $T$ is one-to-one, $x=0$, so $\operatorname{ker} T=\{0\}$.

Conversely, suppose that $\operatorname{ker} T=\{0\}$. Suppose $T\left(x_{1}\right)=T\left(x_{2}\right)$. Then

$$
\begin{aligned}
T\left(x_{1}-x_{2}\right) & =T\left(x_{1}\right)-T\left(x_{2}\right) \\
& =0
\end{aligned}
$$

which says $x_{1}-x_{2} \in \operatorname{ker} T$, so $x_{1}-x_{2}=0$, so $x_{1}=x_{2}$. Thus, $T$ is one-to-one.

## Invertible Linear Transformations

Definition 7. $T \in L(X, Y)$ is invertible if there exists a function $S: Y \rightarrow X$ such that

$$
\begin{aligned}
& S(T(x))=x \quad \forall x \in X \\
& T(S(y))=y \quad \forall y \in Y
\end{aligned}
$$

$$
\begin{aligned}
& S O T=i d_{X} \\
& T O S=i d_{y}
\end{aligned}
$$

Denote $S$ by $T^{-1}$.

Note that $T$ is invertible if and only if it is one-to-one and onto. This is just the condition for the existence of an inverse function. The linearity of the inverse follows from the linearity of $T$


## Invertible Linear Transformations

Theorem 10 (Thm. 2.11). If $T \in L(X, Y)$ is invertible, then $T^{-1} \in L(Y, X)$, i.e. $T^{-1}$ is linear.

Proof. Suppose $\alpha, \beta \in F$ and $v, w \in Y$. Since $T$ is invertible, there exist unique $v^{\prime}, w^{\prime} \in X$ such that

$$
\begin{gathered}
T\left(v^{\prime}\right) \\
T\left(w^{\prime}\right)
\end{gathered}=w \quad T^{-1}(v)=v^{\prime} .
$$

Then

$$
\begin{array}{rlrl} 
& \stackrel{y}{v} \stackrel{\sim}{u} \\
T^{-1}(\alpha v+\beta w) & =T^{-1}\left(\alpha T\left(v^{\prime}\right)+\beta T\left(w^{\prime}\right)\right) & \text { (definition) } \\
& =T^{-1}\left(T\left(\alpha v^{\prime}+\beta w^{\prime}\right)\right) & \text { (T linear) } \\
& =\alpha v^{\prime}+\beta w^{\prime} & \text { (defun of } \left.T^{-1}\right) \\
& =\alpha T^{-1}(v)+\beta T^{-1}(w) & \text { (defur of } \left.v^{\prime}, \omega^{\prime}\right)
\end{array}
$$

so $T^{-1} \in L(Y, X)$. $\square$

## Linear Transformations and Bases

Theorem 11 (Thm. 3.2). Let $X$ and $Y$ be two vector spaces over the same field $F$, and let $V=\left\{v_{\lambda}: \lambda \in \Lambda\right\}$ be a basis for $X$. Then a linear transformation $T \in L(X, Y)$ is completely determined by its values on $V$, that is:

1. Given any set $\left\{y_{\lambda}: \lambda \in \Lambda\right\} \subseteq Y, \exists T \in L(X, Y)$ s.t.

$$
T\left(v_{\lambda}\right)=y_{\lambda} \quad \forall \lambda \in \wedge
$$

2. If $S, T \in L(X, Y)$ and $S\left(v_{\lambda}\right)=T\left(v_{\lambda}\right)$ for all $\lambda \in \wedge$, then $S=T$.

Proof. 1. If $x \in X, x$ has a unique representation of the form

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{\lambda_{i}} \quad \alpha_{i} \neq 0 \quad i=1, \ldots, n
$$

(Recall that if $x=0$, then $n=0$.) Define

$$
T(x)=\sum_{i=1}^{n} \alpha_{i} y_{\lambda_{i}}=T\left(\gamma_{\lambda_{i}}\right) \quad\binom{\text { so } T\left(v_{\gamma}\right)=y_{\lambda} \forall \lambda}{\text { by defu }}
$$

Then $T(x) \in Y$. The verification that $T$ is linear is left as an exercise.

$$
v_{\lambda}=l \cdot v_{\lambda}
$$

2. Suppose $S\left(v_{\lambda}\right)=T\left(v_{\lambda}\right)$ for all $\lambda \in \wedge$. Given $x \in X$,

$$
\begin{array}{rlr}
S(x) & =S\left(\sum_{i=1}^{n} \alpha_{i} v_{\lambda_{i}}\right) & \\
& =\sum_{i=1}^{n} \alpha_{i} S\left(v_{\lambda_{i}}\right) & \text { (Slinear) } \\
& =\sum_{i=1}^{n} \alpha_{i} T\left(v_{\lambda_{i}}\right) & \binom{S \text { and } T \text { agvee }}{\text { on } i v\rangle: \lambda \in \lambda\}} \\
& =T\left(\sum_{i=1}^{n} \alpha_{i} v_{\lambda_{i}}\right) & \text { (T Linear) } \\
& =T(x)
\end{array}
$$

so $S=T$.

## Isomorphisms

Definition 8. Two vector spaces $X$ and $Y$ over a field $F$ are isomorphic if there is an invertible $T \in L(X, Y)$.
$T \in L(X, Y)$ is an isomorphism if it is invertible (one-to-one and onto).

Isomorphic vector spaces are essentially indistinguishable as vector spaces.

## Isomorphisms

Theorem 12 (Thm. 3.3). Two vector spaces $X$ and $Y$ over the same field are isomorphic if and only if $\operatorname{dim} X=\operatorname{dim} Y$.
$\Rightarrow$ : Proof. Suppose $X$ and $Y$ are isomorphic, and let $T \in L(X, Y)$ be an isomorphism. Let

$$
U=\left\{u_{\lambda}: \lambda \in \wedge\right\}
$$

be a basis of $X$, and let $v_{\lambda}=T\left(u_{\lambda}\right)$ for each $\lambda \in \Lambda$. Set

$$
V=\left\{v_{\lambda}: \lambda \in \Lambda\right\}
$$

Since $T$ is one-to-one, $U$ and $V$ have the same cardinality. If T(u)
$y \in Y$, then there exists $x \in X$ such that

$$
\begin{aligned}
y & =T(x) \\
& =T\left(\sum_{i=1}^{n} \alpha_{\lambda_{i}} u_{\lambda_{i}}\right) \\
& =\sum_{i=1}^{n} \alpha_{\lambda_{i}} T\left(u_{\lambda_{i}}\right) \\
& =\sum_{i=1}^{n} \alpha_{\lambda_{i}} v_{\lambda_{i}}
\end{aligned}
$$

$$
(T \text { is onto) }
$$

$$
\text { (li-earity of } T \text { ) }
$$

$$
\text { (deftn of } v_{\lambda_{i}} \text { ) }
$$

which shows that $V$ spans $Y$. To see that $V$ is linearly indepen-
dent, suppose

$$
\begin{array}{rlr}
0 & =\sum_{i=1}^{m} \beta_{i} v_{\lambda_{i}} \\
& =\sum_{i=1}^{m} \beta_{i} T\left(u_{\lambda_{i}}\right) \quad\left(\text { defin of } v_{\lambda_{i}}\right) \\
& =T\left(\sum_{i=1}^{m} \beta_{i} u_{\lambda_{i}}\right) \quad(T \text { linear })
\end{array}
$$

Since $T$ is one-to-one, $\operatorname{ker} T=\{0\}$, so

$$
\sum_{i=1}^{m} \beta_{i} u_{\lambda_{i}}=0
$$

Since $U$ is a basis, we have $\beta_{1}=\cdots=\beta_{m}=0$, so $V$ is linearly independent. Thus, $V$ is a basis of $Y$; since $U$ and $V$ are numerically equivalent, $\operatorname{dim} X=\operatorname{dim} Y$.

$$
\text { bul }|v\rangle
$$

$\langle$ : Now suppose $\operatorname{dim} X=\operatorname{dim} Y$. Let

$$
U=\left\{u_{\lambda}: \lambda \in \Lambda\right\} \text { and } V=\left\{v_{\lambda}: \lambda \in \Lambda\right\}
$$

be bases of $X$ and $Y$; note we can use the same index set $\Lambda$ for both because $\operatorname{dim} X=\operatorname{dim} Y$. By Theorem 3.2, there is a unique

$$
\begin{aligned}
& \uparrow \\
& \text { previous vesult }
\end{aligned}
$$

$T \in L(X, Y)$ such that $T\left(u_{\lambda}\right)=v_{\lambda}$ for all $\lambda \in \Lambda$. If $T(x)=0$, then

$$
\begin{aligned}
T \text { is 1-l; } \quad & =T(x) \\
& =T\left(\sum_{i=1}^{n} \alpha_{i} u_{\lambda_{i}}\right) \\
& =\sum_{1=1}^{n} \alpha_{i} T\left(u_{\lambda_{i}}\right) \quad(T \text { linear }) \\
& =\sum_{1=1}^{n} \alpha_{i} v_{\lambda_{i}} \quad\left(T\left(u_{\lambda i}\right)=v_{\lambda_{i}} \quad \forall i\right) \\
& \Rightarrow \alpha_{1}=\cdots=\alpha_{n}=0 \text { since } V \text { is a basis } \\
& \Rightarrow x=0 \quad \sum_{i=1} \alpha_{i} u_{\lambda_{i}} \\
& \Rightarrow \operatorname{ker} T=\{0\} \\
& \Rightarrow T \text { is one-to-one }
\end{aligned}
$$

$\frac{\text { T is onto: }}{\text { If } y \in Y \text {, write } y=\sum_{i=1}^{m} \beta_{i} v_{\lambda_{i}} \text {. Let }}$

$$
x=\sum_{i=1}^{m} \beta_{i} u_{\lambda_{i}}
$$

Then

$$
\begin{aligned}
T(x) & =T\left(\sum_{i=1}^{m} \beta_{i} u_{\lambda_{i}}\right) \\
& =\sum_{i=1}^{m} \beta_{i} T\left(u_{\lambda_{i}}\right) \\
& =\sum_{i=1}^{m} \beta_{i} v_{\lambda_{i}} \\
& =y
\end{aligned}
$$

$$
(T \text { linear })
$$

so $T$ is onto, so $T$ is an isomorphism and $X, Y$ are isomorphic.

$$
\begin{aligned}
t= & \frac{i}{n}: \quad t \in\left[\frac{i-1}{n}, \frac{i}{n}\right] \\
\Rightarrow \gamma_{n}(t)= & f\left(\frac{i-1}{n}\right)+n\left(\frac{1}{n}\right)\left(f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right) \\
= & f\left(\frac{i}{n}\right) \\
& t \in\left[\frac{i}{n}, \frac{i+1}{n}\right] \\
\Rightarrow \gamma_{n}(t) & =f\left(\frac{i}{n}\right)+0
\end{aligned}
$$

