
Economics 204 Summer/Fall 2021
Lecture 1–Monday July 26, 2021

Section 1.2. Methods of Proof

We begin by looking at the notion of proof. What is a proof? “Proof” has a formal
definition in mathematical logic, and a formal proof is long and unreadable. In practice, you
need to learn to recognize a proof when you see one.

We will begin by discussing four main methods of proof that you will encounter frequently:

• deduction

• contraposition

• induction

• contradiction

We look at each in turn.

Proof by Deduction:

A proof by deduction is composed of a list of statements, the last of which is the statement
to be proven. Each statement in the list is either

• an axiom: a fundamental assumption about mathematics, or part of definition of the
object under study; or

• a previously established theorem; or

• follows from previous statements in the list by a valid rule of inference

Example: Prove that the function f(x) = x2 is continuous at x = 5.

Recall from one-variable calculus that f(x) = x2 is continuous at x = 5 means

∀ε > 0 ∃δ > 0 s.t. |x − 5| < δ ⇒ |f(x) − f(5)| < ε

That is, “for every ε > 0 there exists a δ > 0 such that whenever x is within δ of 5, f(x) is
within ε of f(5).”

To prove the claim, we must systematically verify that this definition is satisfied.

Proof: Let ε > 0 be given. Let

δ = min
{

1,
ε

11

}

> 0
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Why??

Suppose |x − 5| < δ. Since δ ≤ 1, 4 < x < 6, so 9 < x + 5 < 11 and |x + 5| < 11. Then

|f(x) − f(5)| = |x2 − 25|

= |(x + 5)(x − 5)|

= |x + 5||x − 5|

< 11 · δ

≤ 11 ·
ε

11
= ε

Thus, we have shown that for every ε > 0, there exists δ > 0 such that |x − 5| < δ ⇒
|f(x) − f(5)| < ε, so f(x) = x2 is continuous at x = 5.

Proof by Contraposition:

First recall some basics of logic.

¬P means “P is false.”

P ∧ Q means “P is true and Q is true.”

P ∨ Q means “P is true or Q is true (or possibly both).”

¬P ∧ Q means (¬P ) ∧ Q; ¬P ∨ Q means (¬P ) ∨ Q.

P ⇒ Q means “whenever P is satisfied, Q is also satisfied.”

Formally, P ⇒ Q is equivalent to ¬P ∨ Q.

The contrapositive of the statement P ⇒ Q is the statement

¬Q ⇒ ¬P

These are logically equivalent, as we prove below.

Theorem 1 P ⇒ Q is true if and only if ¬Q ⇒ ¬P is true.

Proof: Suppose P ⇒ Q is true. Then either P is false, or Q is true (or possibly both).
Therefore, either ¬P is true, or ¬Q is false (or possibly both), so ¬(¬Q) ∨ (¬P ) is true,
¬Q ⇒ ¬P is true.

Conversely, suppose ¬Q ⇒ ¬P is true. Then either ¬Q is false, or ¬P is true (or possibly
both), so either Q is true, or P is false (or possibly both), so ¬P ∨ Q is true, so P ⇒ Q is
true.
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So to prove a statement P ⇒ Q, it is equivalent to prove the contrapositive ¬Q ⇒ ¬P .
See de la Fuente for an example of the use of proof by contraposition.

Proof by Induction:

We illustrate with an example.

Theorem 2 For every n ∈ N0 = {0, 1, 2, 3, . . .},

n
∑

k=1

k =
n(n + 1)

2

i.e. 1 + 2 + · · · + n = n(n+1)
2

.

Proof:
Base step n = 0: The left hand side (LHS) above =

∑0
k=1 k = the empty sum = 0. The

right hand side (RHS) = 0·1
2

= 0 so the claim is true for n = 0.

Induction step: Suppose

n
∑

k=1

k =
n(n + 1)

2
for some n ≥ 0

We must show that
n+1
∑

k=1

k =
(n + 1)((n + 1) + 1)

2

LHS =
n+1
∑

k=1

k

=
n

∑

k=1

k + (n + 1)

=
n(n + 1)

2
+ (n + 1) by the Induction hypothesis

= (n + 1)
(

n

2
+ 1

)

=
(n + 1)(n + 2)

2

RHS =
(n + 1)((n + 1) + 1)

2

=
(n + 1)(n + 2)

2
= LHS

so by mathematical induction,
∑

n

k=1 k = n(n+1)
2

for all n ∈ N0.
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Proof by Contradiction:

A proof by contradiction proves a statement by assuming its negation is true and working
until reaching a contradiction. Again we illustrate with an example.

Theorem 3 There is no rational number q such that q2 = 2.

Proof: Suppose q2 = 2, q ∈ Q. We can write q = m

n
for some integers m, n ∈ Z. Moreover,

we can assume that m and n have no common factor; if they did, we could divide it out.1

2 = q2 =
m2

n2

Therefore, m2 = 2n2, so m2 is even.

We claim that m is even. If not2, then m is odd, so m = 2p + 1 for some p ∈ Z. Then

m2 = (2p + 1)2

= 4p2 + 4p + 1

= 2(2p2 + 2p) + 1

which is odd, contradiction. Therefore, m is even, so m = 2r for some r ∈ Z.

4r2 = (2r)2

= m2

= 2n2

n2 = 2r2

so n2 is even, which implies (by the argument given above) that n is even. Therefore, n = 2s
for some s ∈ Z, so m and n have a common factor, namely 2, contradiction. Therefore, there
is no rational number q such that q2 = 2.

Section 1.3 Equivalence Relations

Definition 4 A binary relation R from X to Y is a subset R ⊆ X × Y . We write xRy if
(x, y) ∈ R and “not xRy” if (x, y) 6∈ R. R ⊆ X × X is a binary relation on X.

Example: Suppose f : X → Y is a function from X to Y . The binary relation R ⊆ X × Y
defined by

xRy ⇐⇒ f(x) = y

1This is actually a subtle point. We are using the fact that the expression of a natural number as a

product of primes is unique.
2This is a proof by contradiction within a proof by contradiction!
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is exactly the graph of the function f . A function can be considered a binary relation R
from X to Y such that for each x ∈ X there exists exactly one y ∈ Y such that (x, y) ∈ R.

Example: Suppose X = {1, 2, 3} and R is the binary relation on X given by R =
{(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}. This is the binary relation “is weakly greater than,”
or ≥.

Definition 5 A binary relation R on X is

(i) reflexive if ∀x ∈ X, xRx

(ii) symmetric if ∀x, y ∈ X, xRy ⇔ yRx

(iii) transitive if ∀x, y, z ∈ X, (xRy ∧ yRz) ⇒ xRz

Definition 6 A binary relation R on X is an equivalence relation if it is reflexive, symmetric
and transitive.

Definition 7 Given an equivalence relation R on X, write

[x] = {y ∈ X : xRy}

[x] is called the equivalence class containing x.

The set of equivalence classes is the quotient of X with respect to R, denoted X/R.

Example: The binary relation ≥ on R is not an equivalence relation because it is not
symmetric.

Example: Let X = {a, b, c, d} and R = {(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)}.
R is an equivalence relation (why?) and the equivalence classes of R are {a, b} and {c, d}.
X/R = {{a, b}, {c, d}}

The following theorem shows that the equivalence classes of an equivalence relation form
a partition of X: every element of X belongs to exactly one equivalence class.

Theorem 8 Let R be an equivalence relation on X. Then ∀x ∈ X, x ∈ [x].

Given x, y ∈ X, either [x] = [y] or [x]∩ [y] = ∅.

Proof: If x ∈ X, then xRx because R is reflexive, so x ∈ [x].

Suppose x, y ∈ X. If [x] ∩ [y] = ∅, we’re done. So suppose [x] ∩ [y] 6= ∅. We must show
that [x] = [y], i.e. that the elements of [x] are exactly the same as the elements of [y].
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Choose z ∈ [x] ∩ [y]. Then z ∈ [x], so xRz. By symmetry, zRx. Also z ∈ [y], so yRz.
By symmetry again, zRy. Now choose w ∈ [x]. By definition, xRw. Since zRx and R is
transitive, zRw. By symmetry, wRz. Since zRy, wRy by transitivity again. By symmetry,
yRw, so w ∈ [y], which shows that [x] ⊆ [y].
Similarly, [y] ⊆ [x], so [x] = [y].

Section 1.4 Cardinality

Definition 9 Two sets A, B are numerically equivalent (or have the same cardinality) if there
is a bijection f : A → B, that is, a function f : A → B that is 1-1 (a 6= a′ ⇒ f(a) 6= f(a′)),
and onto (∀b ∈ B ∃a ∈ A s.t. f(a) = b).

Roughly speaking, if two sets have the same cardinality then elements of the sets can be
uniquely matched up and paired off.

A set is either finite or infinite. A set is finite if it is numerically equivalent to {1, . . . , n}
for some n. A set that is not finite is infinite.

For example, the set A = {2, 4, 6, . . . , 50} is numerically equivalent to the set {1, 2, . . . , 25}
under the function f(n) = 2n. In particular, this shows that A is finite. The set B =
{1, 4, 9, 16, 25, 36, 49 . . .} = {n2 : n ∈ N} is numerically equivalent to N and is infinite.

An infinite set is either countable or uncountable. A set is countable if it is numerically
equivalent to the set of natural numbers N = {1, 2, 3, . . .}. An infinite set that is not
countable is called uncountable.

Example: The set of integers Z is countable.

Z = {0, 1,−1, 2,−2, . . .}

Define f : N → Z by

f(1) = 0

f(2) = 1

f(3) = −1
...

f(n) = (−1)n

⌊

n

2

⌋

where bxc is the greatest integer less than or equal to x. It is straightforward to verify that
f is one-to-one and onto.

Notice Z ⊃ N but Z 6= N; indeed, Z \ N is infinite! So statements like “One half of the
elements of Z are in N” are not meaningful.
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Theorem 10 The set of rational numbers Q is countable.

“Picture Proof”:

Q =
{

m

n
: m, n ∈ Z, n 6= 0

}

=
{

m

n
: m ∈ Z, n ∈ N

}

m
0 1 −1 2 −2

1 0 → 1 −1 → 2 −2
↙ ↗ ↙ ↗

2 0 1
2

−1
2

1 −1
↓ ↗ ↙ ↗

n 3 0 1
3

−1
3

2
3

−2
3

↙ ↗
4 0 1

4
−1

4
1
2

−1
2

↓ ↗
5 0 1

5
−1

5
2
5

−2
5

Go back and forth on upward-sloping diagonals, omitting the repeats:

f(1) = 0

f(2) = 1

f(3) =
1

2
f(4) = −1

...

f : N → Q, f is one-to-one and onto.

Notice that although Q appears to be much larger than N, in fact they are the same
size.
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