Diagonalization of Symmetric Real Matrices (from Handout)

Definition 1 Let

$$\delta_{ij} = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases}$$

A basis \(V = \{v_1, \ldots, v_n\} \) of \(\mathbb{R}^n \) is **orthonormal** if \(v_i \cdot v_j = \delta_{ij} \).

In other words, a basis is orthonormal if each basis element has unit length (\(||v_i||^2 = v_i \cdot v_i = 1 \) for each \(i \)), and distinct basis elements are perpendicular (\(v_i \cdot v_j = 0 \) for \(i \neq j \)).

Remark: Suppose that \(x = \sum_{j=1}^{n} \alpha_j v_j \) where \(\{v_1, \ldots, v_n\} \) is an orthonormal basis of \(\mathbb{R}^n \). Then

$$x \cdot v_k = \left(\sum_{j=1}^{n} \alpha_j v_j \right) \cdot v_k = \sum_{j=1}^{n} \alpha_j (v_j \cdot v_k) = \sum_{j=1}^{n} \alpha_j \delta_{jk} = \alpha_k$$

so

$$x = \sum_{j=1}^{n} (x \cdot v_j) v_j$$

Example: The standard basis of \(\mathbb{R}^n \) is orthonormal.

Recall that for a real \(n \times m \) matrix \(A \), \(A^\top \) denotes the transpose of \(A \): the \((i, j)^{th}\) entry of \(A^\top \) is the \((j, i)^{th}\) entry of \(A \). So the \(i^{th} \) row of \(A^\top \) is the \(i^{th} \) column of \(A \).

Definition 2 A real \(n \times n \) matrix \(A \) is **unitary** if \(A^\top = A^{-1} \).

Theorem 3 A real \(n \times n \) matrix \(A \) is unitary if and only if the columns of \(A \) are orthonormal.

Proof: Let \(v_j \) denote the \(j^{th} \) column of \(A \).

$$A^\top = A^{-1} \iff A^\top A = I$$

$$\iff v_i \cdot v_j = \delta_{ij} \ \forall i, j$$

$$\iff \{v_1, \ldots, v_n\} \text{ is orthonormal}$$
If A is unitary, let V be the set of columns of A and W be the standard basis of \mathbb{R}^n. Since A is unitary, it is invertible, so V is a basis of \mathbb{R}^n.

$$A^\top = A^{-1} = Mtx_{V,W}(id)$$

Since V is orthonormal, the transformation between bases W and V preserves all geometry, including lengths and angles.

Theorem 4 Let $T \in L(\mathbb{R}^n, \mathbb{R}^n)$ and W be the standard basis of \mathbb{R}^n. Suppose that $Mtx_W(T)$ is symmetric. Then the eigenvectors of T are all real, and there is an orthonormal basis $V = \{v_1, \ldots, v_n\}$ of \mathbb{R}^n consisting of eigenvectors of T, so that $Mtx_W(T)$ is diagonalizable:

$$Mtx_W(T) = Mtx_{W,V}(id) \cdot Mtx_V(T) \cdot Mtx_{V,W}(id)$$

where $Mtx_V T$ is diagonal and the change of basis matrices $Mtx_{V,W}(id)$ and $Mtx_{V,W}(id)$ are unitary.

Proof: (Sketch) The proof of the theorem requires a lengthy digression into the linear algebra of complex vector spaces. Here is a very brief outline.

1. Let $M = Mtx_W(T)$.
2. The inner product in \mathbb{C}^n is defined as follows:

$$x \cdot y = \sum_{j=1}^{n} x_j \cdot \overline{y_j}$$

where \overline{c} denotes the complex conjugate of any $c \in \mathbb{C}$; note that this implies that $x \cdot y = \overline{y \cdot x}$. The usual inner product in \mathbb{R}^n is the restriction of this inner product on \mathbb{C}^n to \mathbb{R}^n.

3. Given any complex matrix A, define A^* to be the matrix whose $(i, j)^{th}$ entry is $\overline{a_{ji}}$, in other words, A^* is formed by taking the complex conjugate of each element of the transpose of A. It is easy to verify that given $x, y \in \mathbb{C}^n$ and a complex $n \times n$ matrix A, $Ax \cdot y = x \cdot A^*y$. Since M is real and symmetric, $M^* = M$.

4. If M is real and symmetric, and $\lambda \in \mathbb{C}$ is an eigenvalue of M, with eigenvector $x \in \mathbb{C}^n$, then

$$\lambda |x|^2 = \lambda (x \cdot x) = (\lambda x) \cdot x = (Mx) \cdot x = x \cdot (M^*x)$$
\[
\begin{align*}
\lambda &= x \cdot (Mx) \\
&= x \cdot (\lambda x) \\
&= (\lambda x) \cdot x \\
&= \lambda(x \cdot x) \\
&= \lambda|x|^2 \\
&= \bar{\lambda}|x|^2
\end{align*}
\]

which proves that $\lambda = \bar{\lambda}$, hence $\lambda \in \mathbb{R}$.

5. If M is real (not necessarily symmetric) and $\lambda \in \mathbb{R}$ is an eigenvalue, then $\det(M - \lambda I) = 0 \Rightarrow \exists v \in \mathbb{R}^n$ s.t. $(M - \lambda I)v = 0$, so there is at least one real eigenvector. Symmetry implies that, if λ has multiplicity m, there are m independent real eigenvectors corresponding to λ (but unfortunately we don’t have time to show this). Thus, there is a basis of eigenvectors, hence M is diagonalizable over \mathbb{R}.

6. If M is real and symmetric, eigenvectors corresponding to distinct eigenvalues are orthogonal: Suppose that $Mx = \lambda x$ and $My = \rho y$ with $\rho \neq \lambda$. Then

\[
\begin{align*}
\lambda(x \cdot y) &= (\lambda x) \cdot y \\
&= (Mx) \cdot y \\
&= (Mx)^\top y \\
&= (x^\top M^\top) y \\
&= (x^\top M) y \\
&= x^\top(My) \\
&= x^\top(\rho y) \\
&= x \cdot (\rho y) \\
&= \rho(x \cdot y)
\end{align*}
\]

so $(\lambda - \rho)(x \cdot y) = 0$; since $\lambda - \rho \neq 0$, we must have $x \cdot y = 0$.

7. Using the Gram-Schmidt method, we can get an orthonormal basis of eigenvectors:

- Let $X_\lambda = \{x \in \mathbb{R}^n : Mx = \lambda x\}$, the set of all eigenvectors corresponding to λ. Notice that if $Mx = \lambda x$ and $My = \lambda y$, then

\[
M(\alpha x + \beta y) = \alpha Mx + \beta My = \alpha \lambda x + \beta \lambda y = \lambda(\alpha x + \beta y)
\]

so X_λ is a vector subspace. Thus, given any basis of X_λ, we wish to find an orthonormal basis of X_λ; all elements of this orthonormal basis will be eigenvectors corresponding to λ.

- Suppose X_λ is m-dimensional and we are given independent vectors $x_1, \ldots, x_m \in X_\lambda$. The Gram-Schmidt method finds an orthonormal basis $\{v_1, \ldots, v_m\}$ for X_λ.

- Let $v_1 = \frac{x_1}{|x_1|}$. Note that $|v_1| = 1$.

3
Suppose we have found an orthonormal set \(\{v_1, \ldots, v_k\} \) such that \(\text{span} \{v_1, \ldots, v_k\} = \text{span} \{x_1, \ldots, x_k\} \), with \(k < m \). Let

\[
y_{k+1} = x_{k+1} - \sum_{j=1}^{k} (x_{k+1} \cdot v_j) v_j, \quad v_{k+1} = \frac{y_{k+1}}{|y_{k+1}|}
\]

• span \(\{v_1, \ldots, v_{k+1}\} = \text{span} \{v_1, \ldots, v_{k}, v_{k+1}\} = \text{span} \{v_1, \ldots, v_{k}, x_{k+1}\} = \text{span} \{x_1, \ldots, x_k, x_{k+1}\} \)

• For \(i = 1, \ldots, k \),

\[
y_{k+1} \cdot v_i = \left(x_{k+1} - \sum_{j=1}^{k} (x_{k+1} \cdot v_j) v_j \right) \cdot v_i = x_{k+1} \cdot v_i - \sum_{j=1}^{k} (x_{k+1} \cdot v_j)(v_j \cdot v_i) = x_{k+1} \cdot v_i - \sum_{j=1}^{k} (x_{k+1} \cdot v_j)\delta_{ij} = x_{k+1} \cdot v_i - x_{k+1} \cdot v_i = 0
\]

\[
v_{k+1} \cdot v_i = \frac{y_{k+1} \cdot v_i}{|y_{k+1}|} = 0 = \frac{|y_{k+1}|}{|y_{k+1}|} = 1
\]

Application to Quadratic Forms

Consider a quadratic form

\[
f(x_1, \ldots, x_n) = \sum_{i=1}^{n} \alpha_{ii}x_i^2 + \sum_{i<j} \beta_{ij}x_ix_j
\]

(1)

Let

\[
\alpha_{ij} = \begin{cases}
\frac{\beta_{ij}}{\beta_{ji}} & \text{if } i < j \\
\frac{\beta_{ij}}{2} & \text{if } i > j
\end{cases}
\]
Let

\[A = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nn} \end{pmatrix} \]

so

\[f(x) = x^\top Ax \]

Example: Let

\[f(x) = \alpha x_1^2 + \beta x_1 x_2 + \gamma x_2^2 \]

Let

\[A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \]

so \(A \) is symmetric and

\[
\begin{align*}
(x_1, x_2) \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} &= (x_1, x_2) \begin{pmatrix} \alpha x_1 + \beta x_2 \\ \beta x_1 + \gamma x_2 \end{pmatrix} \\
&= \alpha x_1^2 + \beta x_1 x_2 + \gamma x_2^2 \\
&= f(x)
\end{align*}
\]

Returning to the general quadratic form in Equation (1), \(A \) is symmetric, so let \(V = \{ v_1, \ldots, v_n \} \) be an orthonormal basis of eigenvectors of \(A \) with corresponding eigenvalues \(\lambda_1, \ldots, \lambda_n \). Then

\[
A = U^\top D U
\]

where

\[
D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}
\]

and

\[
U = Mtx_{V,W}(id) \text{ is unitary}
\]

The columns of \(U^\top \) (the rows of \(U \)) are the coordinates of \(v_1, \ldots, v_n \), expressed in terms of the standard basis \(W \).

Given \(x \in \mathbb{R}^n \), recall

\[
x = \sum_{i=1}^n \gamma_i v_i \text{ where } \gamma_i = x \cdot v_i
\]

Then

\[
f(x) = f \left(\sum \gamma_i v_i \right)
\]
$$= (\sum \gamma_i v_i)^\top A (\sum \gamma_i v_i)$$
$$= (\sum \gamma_i v_i)^\top U^\top DU (\sum \gamma_i v_i)$$
$$= (U \sum \gamma_i v_i)^\top D (U \sum \gamma_i v_i)$$
$$= (\sum \gamma_i U v_i)^\top D (\sum \gamma_i U v_i)$$
$$= (\gamma_1, \ldots, \gamma_n) D \begin{pmatrix} \gamma_1 \\ \vdots \\ \gamma_n \end{pmatrix}$$
$$= \sum \lambda_i \gamma_i^2$$

The equation for the level sets of f is
$$\sum_{i=1}^n \lambda_i \gamma_i^2 = C$$

- If $\lambda_i \geq 0$ for all i, the level set is an ellipsoid, with principal axes in the directions v_1, \ldots, v_n. The length of the principal axis along v_i is $\sqrt{C/\lambda_i}$ if $C \geq 0$ (if $\lambda_i = 0$, the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if $C < 0$. See Figure 1.

- If $\lambda_i \leq 0$ for all i, the level set is an ellipsoid, with principal axes in the directions v_1, \ldots, v_n. The length of the principal axis along v_i is $\sqrt{C/\lambda_i}$ if $C \leq 0$ (if $\lambda_i = 0$, the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if $C > 0$.

- If $\lambda_i > 0$ for some i and $\lambda_j < 0$ for some j, the level set is a hyperboloid. For example, suppose $n = 2$, $\lambda_1 > 0$, $\lambda_2 < 0$. The equation is
$$C = \lambda_1 \gamma_1^2 + \lambda_2 \gamma_2^2$$
$$= (\sqrt{\lambda_1} \gamma_1 + \sqrt{|\lambda_2|} \gamma_2) (\sqrt{\lambda_1} \gamma_1 - \sqrt{|\lambda_2|} \gamma_2)$$

This is a hyperbola with asymptotes
$$0 = \sqrt{\lambda_1} \gamma_1 + \sqrt{|\lambda_2|} \gamma_2$$
$$\Rightarrow \gamma_1 = -\sqrt{|\lambda_2|} \gamma_2$$
$$0 = \left(\sqrt{\lambda_1} \gamma_1 - \sqrt{|\lambda_2|} \gamma_2\right)$$
$$\Rightarrow \gamma_1 = \sqrt{\frac{|\lambda_2|}{\lambda_1}} \gamma_2$$

See Figure 2. This proves the following corollary of Theorem 4.
Corollary 5 Consider the quadratic form (1).

1. \(f \) has a global minimum at 0 if and only if \(\lambda_i \geq 0 \) for all \(i \); the level sets of \(f \) are ellipsoids with principal axes aligned with the orthonormal eigenvectors \(v_1, \ldots, v_n \).

2. \(f \) has a global maximum at 0 if and only if \(\lambda_i \leq 0 \) for all \(i \); the level sets of \(f \) are ellipsoids with principal axes aligned with the orthonormal eigenvectors \(v_1, \ldots, v_n \).

3. If \(\lambda_i < 0 \) for some \(i \) and \(\lambda_j > 0 \) for some \(j \), then \(f \) has a saddle point at 0; the level sets of \(f \) are hyperboloids with principal axes aligned with the orthonormal eigenvectors \(v_1, \ldots, v_n \).

Section 3.4. Linear Maps between Normed Spaces

Definition 6 Suppose \(X, Y \) are normed vector spaces and \(T \in L(X, Y) \). We say \(T \) is **bounded** if

\[
\exists \beta \in \mathbb{R} \text{ s.t. } \|T(x)\|_Y \leq \beta \|x\|_X \forall x \in X
\]

Note this implies that \(T \) is Lipschitz with constant \(\beta \).

Theorem 7 (Thms. 4.1, 4.3) Let \(X, Y \) be normed vector spaces and \(T \in L(X, Y) \). Then

- \(T \) is continuous at some point \(x_0 \in X \)
- \(\iff \) \(T \) is continuous at every \(x \in X \)
- \(\iff \) \(T \) is uniformly continuous on \(X \)
- \(\iff \) \(T \) is Lipschitz
- \(\iff \) \(T \) is bounded

Proof: Suppose \(T \) is continuous at \(x_0 \). Fix \(\varepsilon > 0 \). Then there exists \(\delta > 0 \) such that

\[
\|z - x_0\| < \delta \Rightarrow \|T(z) - T(x_0)\| < \varepsilon
\]

Now suppose \(x \) is any element of \(X \). If \(\|y - x\| < \delta \), let \(z = y - x + x_0 \), so \(\|z - x_0\| = \|y - x\| < \delta \).

\[
\|T(y) - T(x)\| = \|T(y - x)\| = \|T(y - x + x_0 - x_0)\| = \|T(z) - T(x_0)\| < \varepsilon
\]

which proves that \(T \) is continuous at every \(x \), and uniformly continuous.
We claim that T is bounded if and only if T is continuous at 0. Suppose T is not bounded. Then

$$\exists \{x_n\} \text{ s.t. } \|T(x_n)\| > n\|x_n\| \quad \forall n$$

Note that $x_n \neq 0$. Let $\varepsilon = 1$. Fix $\delta > 0$ and choose n such that $\frac{1}{n} < \delta$. Let

$$x'_n = \frac{x_n}{n\|x_n\|}$$

$$\|x'_n\| = \frac{\|x_n\|}{n\|x_n\|}$$

$$= \frac{1}{n}$$

$$< \delta$$

$$\|T(x'_n) - T(0)\| = \|T(x'_n)\|$$

$$= \frac{1}{n\|x_n\|}\|T(x_n)\|$$

$$> \frac{n\|x_n\|}{n\|x_n\|}$$

$$= 1$$

$$= \varepsilon$$

Since this is true for every δ, T is not continuous at 0. Therefore, T continuous at 0 implies T is bounded. Now, suppose T is bounded, so find M such that $\|T(x)\| \leq M\|x\|$ for every $x \in X$. Given $\varepsilon > 0$, let $\delta = \varepsilon/M$. Then

$$\|x - 0\| < \delta \quad \Rightarrow \quad \|x\| < \delta$$

$$\Rightarrow \quad \|T(x) - T(0)\| = \|T(x)\| < M\delta$$

$$\Rightarrow \quad \|T(x) - T(0)\| < \varepsilon$$

so T is continuous at 0.

Thus, we have shown that continuity at some point x_0 implies uniform continuity, which implies continuity at every point, which implies T is continuous at 0, which implies that T is bounded, which implies that T is continuous at 0, which implies that T is continuous at some x_0, so all of the statements except possibly the Lipschitz statement are equivalent.

Suppose T is bounded, with constant M. Then

$$\|T(x) - T(y)\| = \|T(x - y)\|$$

$$\leq M\|x - y\|$$

so T is Lipschitz with constant M; conversely, if T is Lipschitz with constant M, then T is bounded with constant M. So all the statements are equivalent. ■

Every linear map on a finite-dimensional normed vector space is bounded (and thus continuous, uniformly continuous, and Lipschitz continuous).
Theorem 8 (Thm. 4.5) Let X, Y be normed vector spaces with $\dim X = n$. Every $T \in L(X,Y)$ is bounded.

Proof: See de la Fuente. ■

Definition 9 A topological isomorphism between normed vector spaces X and Y is a linear transformation $T \in L(X,Y)$ that is invertible (one-to-one, onto), continuous, and has a continuous inverse.

Two normed vector spaces X and Y are topologically isomorphic if there is a topological isomorphism $T : X \rightarrow Y$.

Suppose X and Y are normed vector spaces. We define

$$B(X,Y) = \{ T \in L(X,Y) : T \text{ is bounded} \}$$

$$\|T\|_{B(X,Y)} = \sup \left\{ \frac{\|T(x)\|_Y}{\|x\|_X}, x \in X, x \neq 0 \right\}$$

$$= \sup \{ \|T(x)\|_Y : \|x\|_X = 1 \}$$

Theorem 10 (Thm. 4.8) Let X, Y be normed vector spaces. Then

$$\left(B(X,Y), \| \cdot \|_{B(X,Y)} \right)$$

is a normed vector space.

Proof: See de la Fuente. ■

Theorem 11 (Thm. 4.9) Let $T \in L(\mathbb{R}^n, \mathbb{R}^m) (= B(\mathbb{R}^n, \mathbb{R}^m))$ with matrix $A = (a_{ij})$ with respect to the standard bases. Let

$$M = \max \{ |a_{ij}| : 1 \leq i \leq m, 1 \leq j \leq n \}$$

Then

$$M \leq \|T\| \leq M \sqrt{mn}$$

Proof: See de la Fuente. ■

Theorem 12 (Thm. 4.10) Let $R \in L(\mathbb{R}^m, \mathbb{R}^n)$ and $S \in L(\mathbb{R}^n, \mathbb{R}^p)$. Then

$$\|S \circ R\| \leq \|S\| \|R\|$$
Proof: See de la Fuente.

Define

$$\Omega(\mathbb{R}^n) = \{T \in L(\mathbb{R}^n, \mathbb{R}^n) : T \text{ is invertible}\}$$

Theorem 13 (Thm. 4.11') Suppose $$T \in L(\mathbb{R}^n, \mathbb{R}^n)$$ and $$E$$ is the standard basis of $$\mathbb{R}^n$$. Then

$$T$$ is invertible

$$\iff \ker T = \{0\}$$

$$\iff \det (Mtx_E(T)) \neq 0$$

$$\iff \det (Mtx_V(T)) \neq 0 \text{ for every basis } V$$

$$\iff \det (Mtx_V,W(T)) \neq 0 \text{ for every pair of bases } V,W$$

Theorem 14 (Thm. 4.12) If $$S, T \in \Omega(\mathbb{R}^n)$$, then $$S \circ T \in \Omega(\mathbb{R}^n)$$ and

$$(S \circ T)^{-1} = T^{-1} \circ S^{-1}$$

Theorem 15 (Thm. 4.14) Let $$S, T \in L(\mathbb{R}^n, \mathbb{R}^n)$$. If $$T$$ is invertible and

$$\|T - S\| < \frac{1}{\|T^{-1}\|}$$

then $$S$$ is invertible. In particular, $$\Omega(\mathbb{R}^n)$$ is open in $$L(\mathbb{R}^n, \mathbb{R}^n) = B(\mathbb{R}^n, \mathbb{R}^n)$$.

Proof: See de la Fuente.

Theorem 16 (4.15) The function $$(\cdot)^{-1} : \Omega(\mathbb{R}^n) \to \Omega(\mathbb{R}^n)$$ that assigns $$T^{-1}$$ to each $$T \in \Omega(\mathbb{R}^n)$$ is continuous.

Proof: See de la Fuente.
Figure 1: If $\lambda_1, \lambda_2 > 0$ and $C > 0$, the level set is an ellipsoid, with principal axes in the directions v_1, v_2. The length of the principal axis along v_i is $\sqrt{C/\lambda_i}$.
Figure 2: If $\lambda_1 > 0$ and $\lambda_2 < 0$, the level set is a hyperbola with asymptotes $\gamma_1 = \sqrt{\frac{\lambda_2}{\lambda_1}} \gamma_2$.