Econ 204 - Problem Set 3^{1}

Due Friday August 6, 2021

1. Let (X, d) be a metric space:
(a) Let $y \in X$ be given. Define the function $d_{y}: X \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
d_{y}(x)=d(x, y) \tag{1}
\end{equation*}
$$

Show that d_{y} is a continuous function on X for each $y \in X$.
(b) Let A be a subset of X and $x \in X$. Recall that the distance from the point x to the set A is defined as:

$$
\begin{equation*}
\rho(x, A)=\inf \{d(x, a): a \in A\} \tag{2}
\end{equation*}
$$

Show that the closure of set A is the set of all points with zero distance to A, that is:

$$
\begin{equation*}
\bar{A}=\{x \in X: \rho(x, A)=0\} \tag{3}
\end{equation*}
$$

(c) Now let $A \subset X$ be a compact subset. Show that $\rho(x, A)=d(x, a)$ for some $a \in A$.
2. Let $U \subseteq \mathbb{R}^{d}$ be an open set and $f:[0,1] \rightarrow U$ be continuous. For each $n \in \mathbb{N}$, define the n -polygonal approximation of f to be the function $\gamma_{n}:[0,1] \rightarrow \mathbb{R}^{d}$ given by:

$$
\gamma_{n}(t)=f\left(\frac{i-1}{n}\right)+n\left(t-\frac{i-1}{n}\right)\left(f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right)
$$

where $i \in\{1, \ldots, n\}$ is such that $t \in\left[\frac{i-1}{n}, \frac{i}{n}\right]$.
(a) Show that γ_{n} is continuous for all $n \in \mathbb{N}$.
(b) Show that there exists $n_{0} \in \mathbb{N}$ such that $\forall n \geq n_{0} \gamma_{n}(t) \in U$ for all $t \in[0,1]$.
3. Let (X, d) be a metric space. Given $x \in X$, we define the connected component of x in X as the set

$$
C(x)=\bigcup_{\substack{U \subset X \text { s.t. } x \in U \\ U \text { is connected }}} U
$$

Prove that:

[^0](a) For every $x \in X, C(x)$ is a non-empty connected set.
(b) For every two elements $x, y \in X$, they either share a connected component $C(x)=$ $C(y)$ or their connected components are disjoint $C(x) \cap C(y)=\varnothing$.
(c) Conclude that there exists a subset $\mathcal{A} \subseteq X$ such that $X=\dot{\cup}_{x \in \mathcal{A}} C(x)$, where \dot{U} represents the disjoint union.
4. Define the correspondence $\Gamma:[0,1] \rightarrow 2^{[0,1]}$ by:
\[

\Gamma(x)=\left\{$$
\begin{array}{ll}
{[0,1] \cap \mathbb{Q}} & \text { if } x \in[0,1] \backslash \mathbb{Q} \tag{4}\\
{[0,1] \backslash \mathbb{Q}} & \text { if } x \in[0,1] \cap \mathbb{Q}
\end{array}
$$.\right.
\]

Show that Γ is not continuous, but it is lower-hemicontinuous. Is Γ upper-hemicontinuous at any rational? At any irrational? Does this correspondence have a closed graph?
5. Let X be a metric space, and $I: X \rightarrow \mathbb{R}_{+}$be a lower semi-continuous function ${ }^{2}$.
(a) Prove that for every given $\varepsilon>0$ there exists an open set U_{ε} containing $x \in X$ such that

$$
\begin{equation*}
\inf \left\{I(y): y \in U_{\varepsilon}\right\} \geq I(x)-\varepsilon \tag{5}
\end{equation*}
$$

(b) Let $x \in X$. For each $n \in \mathbb{N}$ let

$$
\begin{equation*}
m_{n}=\inf \left\{I(y): y \in B_{1 / n}(x)\right\} . \tag{6}
\end{equation*}
$$

Show that $\left\{m_{n}\right\}$ is an increasing sequence and that $m_{n} \rightarrow I(x)$.
6. Let x and y be moving objects in \mathbb{R}. Time is discrete, namely $t \in \mathbb{Z}_{+}:=\{0\} \cup \mathbb{N}$. In addition, $\beta>1$ is a fixed parameter. For $a, b \in \mathbb{R}$, let $\rho(a, b):=|a-b| \wedge 1$ (as mentioned in the section, the symbol \wedge is sometimes used to refer to the minimum of two elements). Then for any $x, y \in \mathbb{R}^{\omega}$ 3 , let

$$
\begin{equation*}
d(x, y)=\sum_{t \in \mathbb{Z}_{+}} \beta^{-t} \rho\left(x_{t}, y_{t}\right) \tag{7}
\end{equation*}
$$

denotes the distance between $x=\left(x_{0}, x_{1}, \ldots\right)$ and $y=\left(y_{0}, y_{1}, \ldots\right)$, where x_{t} is the position of x at time t on the real line.
(a) Show that d is a metric on \mathbb{R}^{ω}.
(b) Show that $\left(\mathbb{R}^{\omega}, d\right)$ is a bounded metric space.
(c) Is $[0,1]^{\omega}$ an open or closed subset of \mathbb{R}^{ω} ? (in either case present a proof)
(d) Is $\left(\mathbb{R}^{\omega}, d\right)$ a complete metric space? (prove if yes, otherwise provide a counterexample)

[^1](e) Is $[0,1]^{\omega}$ a totally bounded subset under d ? Is it a compact subset?

[^0]: ${ }^{1}$ In case of any problems with the solution to the exercises please email brunosmaniotto@berkeley.edu

[^1]: ${ }^{2}$ A function $I: X \rightarrow \mathbb{R}$ is called lower semi-continuous iff for every α the set $\{x: I(x)>\alpha\}$ is open in X.
 ${ }^{3}$ We define the infinite cartesian product of a set X with itself as $X^{\omega}:=\prod_{i \in \mathbb{N}} X$.

