Econ 204 - Problem Set 4

Due Tuesday, August 10

1. Let $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ be defined by $T(w, z)=(z, w)$. Find all eigenvalues and eigenvectors of T.
2. Give an example of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(a v)=a f(v)$ for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^{2}$ but f is not linear.
3. Prove that if $\left(v_{1}, \ldots, v_{n}\right)$ spans V and $T \in L(V, W)$ is onto, then $\left(T v_{1}, \ldots, T v_{n}\right)$ spans W.
4. Let V be a finite-dimensional vector space and $W \subset V$ be a vector subspace. Prove that W has a complement in V, i.e., there exists a vector subspace $W^{\prime} \subset V$ such that $W \cap W^{\prime}=\{0\}$ and $W+W^{\prime}=V$.
5. Let U and V be vector spaces. Suppose $T: U \rightarrow V$ is a linear transformation and $v \in V$. Prove that, if the preimage $T^{-1}(v)$ is non-empty, and $u \in T^{-1}(v)$, then $T^{-1}(v)=\{u+z \mid z \in$ $\operatorname{ker} T\}=u+\operatorname{ker} T$.
6. Let V be a finite dimensional vector space and $T, S \in L(V, V)$. Prove that $T S$ is invertible if and only if T and S are invertible.
7. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $T(x, y)=(4 x-2 y, x+y)$. Let V be the standard basis and $W=\{(5,3),(1,1)\}$ be another basis of \mathbb{R}^{2}.
(a) Find $M t x_{V}(T)$.
(b) Find $M t x_{W}(T)$.
(c) Compute $T(4,3)$ using the matrix representation of W.
