Economics 204 Summer/Fall 2021
 Final Exam - Suggested Solutions

Answer all of the questions below. Be as complete, correct, and concise as possible. There are 7 questions for a total of 180 points possible; point values for each problem are in parentheses. For questions with subparts, each subpart is worth the same number of points. Use the points as a guide to allocating your time.

1. (15) Let D be an $n \times n$ matrix that is diagonal, so $d_{i j}=0$ for all $i \neq j$, where $d_{i j}$ is the $i j^{t h}$ entry of the matrix D (an $n \times n$ matrix M is diagonal if $m_{i j}=0$ for all $i \neq j$, where $m_{i j}$ denotes the $i j^{t h}$ entry of $\left.M\right)$. Show that for every $k \in \mathbb{N}, D^{k}$ is also a diagonal matrix (where M^{k} denotes the product of k copies of the $n \times n$ matrix M).
(Hint: use induction.)
Solution: For the base case $k=1$, the claim follows by definition: D is a diagonal matrix. For the induction hypothesis, assume that the claim is true for some $k \geq 1$, so D^{k} is a diagonal matrix. Then for $k+1$,

$$
D^{k+1}=D^{k} D
$$

Let $A=D^{k+1}$ and $B=D^{k}$, so $A=B D$. Then by the induction hypothesis, B is diagonal. Let b_{i} denote the $i^{\text {th }}$ row of B and d_{j} denote the $j^{t h}$ column of D. Then $a_{i j}=b_{i} \cdot d_{j}$, where $a_{i j}$ is the $i j^{\text {th }}$ element of the matrix A. Since B and D are both diagonal matrices, $b_{i k}=0$ for all $i \neq k$ and $d_{k j}=0$ for all $k \neq j$. Then by definition

$$
a_{i j}=b_{i} \cdot d_{j}=\sum_{k=1}^{n} b_{i k} d_{k j}=0 \quad \forall i \neq j
$$

This implies $A=D^{k+1}$ is a diagonal matrix by definition. Thus by induction, D^{k} is a diagonal matrix for all $k \in \mathbb{N}$.
2. (15) Let (X, d) be a metric space and $f, g: X \rightarrow \mathbb{R}$ be continuous functions. Let $C=\{x \in X: f(x) \geq g(x)\}$. Show that C is a closed set.
Solution: Let $h: X \rightarrow \mathbb{R}$ be given by $h=f-g$. Then note that h is continuous, because f and g are continuous, and

$$
C=\{x \in X: f(x) \geq g(x)\}=\{x \in X: h(x)=f(x)-g(x) \geq 0\}
$$

Thus $C=h^{-1}([0, \infty))$. Since $[0, \infty) \subseteq \mathbb{R}$ is closed and h is continuous, $C=h^{-1}([0, \infty))$ is closed.
3. (30) Let X be a vector space over the field F, and let V be a proper subset of X, so $V \subseteq X$ and $V \neq X$. Suppose V is linearly independent. Show that V is a basis for X if and only if every proper superset of V is linearly dependent, that is, if and only if for every subset $W \subseteq X$ such that $V \subseteq W$ and $V \neq W, W$ is linearly dependent.

Solution: First suppose V is a basis for X. Then let $W \subseteq X$ such that $V \subseteq W$ and $V \neq W$. Let $x \in W \backslash V$. Then since V is a basis for X, there exist $v_{1}, \ldots, v_{n} \in V$ and $\alpha_{1}, \ldots, \alpha_{n} \in F$ such that

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

Thus

$$
0=-x+\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

Since $V \subseteq W$ and $x \in W,\left\{x, v_{1}, \ldots, v_{n}\right\} \subseteq W$. The coefficients above are not all zero; in particular, $-1 \neq 0$. So W is linearly dependent.
For the converse, to show that V is a basis, let $x \in X \backslash V$. Then let $W=V \cup\{x\}$. By construction $V \subseteq W$ and $V \neq W$, so by assumption W is linearly dependent. Since V is linearly independent, there exists $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ not all zero and $v_{1}, \ldots, v_{n} \in V$ such that

$$
\alpha_{0} x+\sum_{i=1}^{n} \alpha_{i} v_{i}=0
$$

and in addition, it must be that $\alpha_{0} \neq 0$. Then this implies

$$
-\alpha_{0} x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

or

$$
x=\sum_{i=1}^{n}-\frac{\alpha_{i}}{\alpha_{0}} v_{i}
$$

Thus $x \in$ span V. Since $x \in X \backslash V$ was arbitrary, V spans X. Since V is linearly independent by assumption, V is a basis for X.
4. (30) Let $a, b \in \mathbb{R}$ with $a<b$, and $f:[a, b] \rightarrow \mathbb{R}$. Suppose f is continuous on $[a, b]$ and differentiable on (a, b). Show that if $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$ then f is one-to-one.
Solution: Let $x, y \in[a, b]$ such that $x \neq y$. Without loss of generality, take $x<y$. Then $[x, y] \subseteq[a, b]$, so f is continuous on $[x, y]$ and differentiable on (x, y). By the Mean Value Theorem, there exists $z \in(x, y)$ such that

$$
f(y)-f(x)=f^{\prime}(z)(y-x)
$$

By assumption, $f^{\prime}(z) \neq 0$, and $y-x \neq 0$, so $f(y)-f(x) \neq 0$, or $f(y) \neq f(x)$. Since $x, y \in[a, b]$ were arbitrary, this implies that f is one-to-one.
5. (30) Let (X, d) be a metric space and $C \subseteq X$ be compact. Let $\left\{x_{n}\right\} \subseteq C$ be a sequence and let A be the set of cluster points of $\left\{x_{n}\right\}$.
a. Show that A is closed and $A \subseteq C$.

Solution: To show that A is closed, let $\left\{y_{k}\right\} \subseteq A$ such that $y_{k} \rightarrow y$. It suffices to show $y \in A$, that is, that y is a cluster point of $\left\{x_{n}\right\}$. Then let $\varepsilon>0$. Since $y_{k} \rightarrow y$, there exists K such that for all $k>K, y_{k} \in B_{\frac{\varepsilon}{2}}(y)$. Then fix $k>K$. Since $y_{k} \in A, y_{k}$ is a cluster point of $\left\{x_{n}\right\}$. So by definition $\left\{n \in \mathbb{N}: x_{n} \in B_{\frac{\varepsilon}{2}}\left(y_{k}\right)\right\}$ is infinite. Then let $x_{n} \in B_{\frac{\varepsilon}{2}}\left(y_{k}\right)$.

$$
\begin{aligned}
d\left(x_{n}, y\right) & \leq d\left(x_{n}, y_{k}\right)+d\left(y_{k}, y\right) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Thus

$$
\left\{n \in \mathbb{N}: x_{n} \in B_{\frac{\varepsilon}{2}}\left(y_{k}\right)\right\} \subseteq\left\{n \in \mathbb{N}: x_{n} \in B_{\varepsilon}(y)\right\}
$$

This implies $\left\{n \in \mathbb{N}: x_{n} \in B_{\varepsilon}(y)\right\}$ is infinite. Since $\varepsilon>0$ was arbitrary, this implies y is a cluster point of $\left\{x_{n}\right\}$ by definition, so $y \in A$.

To show that $A \subseteq C$, let $x \in A$. Since x is a cluster point of $\left\{x_{n}\right\}$, there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightarrow x$. Then $\left\{x_{n}\right\} \subseteq C$ by assumption, so $\left\{x_{n_{k}}\right\} \subseteq C$. Since C is a compact subset of a metric space, C is closed. Thus $x \in C$. Thus $A \subseteq C$.

Here is an alternative argument to show A is closed using the subsequence characterization of cluster points. Let $\left\{y_{k}\right\} \subseteq A$ be a sequence such that $y_{k} \rightarrow y$. Then for each m there exists $y_{k_{m}}$ such that $y_{k_{m}} \in B_{\frac{1}{2 m}}(y)$. Now construct a subsequence of $\left\{x_{n}\right\}$ inductively as follows.
For $j=1$, choose $x_{n_{1}}$ such that $x_{n_{1}} \in B_{\frac{1}{2}}\left(y_{k_{1}}\right)$. This is possible because $y_{k_{1}}$ is a cluster point of $\left\{x_{n}\right\}$. Now suppose $n_{j}>n_{j-1}>\ldots>n_{1}$ have been chosen so that such that $x_{n_{i}} \in B_{\frac{1}{2 i}}\left(y_{k_{i}}\right)$ for each i. Then choose $n_{j+1}>n_{j}$ such that $x_{n_{j+1}} \in B \frac{1}{2(j+1)}\left(y_{k_{j+1}}\right)$. Again this is possible because $y_{k_{j+1}}$ is a cluster point of $\left\{x_{n}\right\}$.
Then $\left\{x_{n_{j}}\right\}$ is a subsequence of $\left\{x_{n}\right\}$ and for each $j, x_{n_{j}} \in B_{\frac{1}{2 j}}\left(y_{k_{j}}\right)$. Using the triangle inequality and the choice of $y_{k_{j}}$ above, this implies $x_{n_{j}} \in B_{\frac{1}{j}}(y)$ for each j. Then by construction, $x_{n_{j}} \rightarrow y$. Thus y is a cluster point of $\left\{x_{n}\right\}$, that is, $y \in A$.
b. Show that $A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ is compact.
(Hint: Use the open cover definition of compactness.)
Solution: Let $\mathcal{U}=\left\{U_{\lambda}: \lambda \in \Lambda\right\}$ be an open cover of $A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$. From (a), A is closed and $A \subseteq C$. Since C is compact, this implies A is compact. Then \mathcal{U} is an open cover of A, so there exist $U_{\lambda_{1}}, \ldots, U_{\lambda_{n}} \in \mathcal{U}$ such that

$$
A \subseteq U_{\lambda_{1}} \cup \cdots \cup U_{\lambda_{n}}
$$

Now claim $\left\{n \in \mathbb{N}: x_{n} \notin U_{\lambda_{1}} \cup \cdots \cup U_{\lambda_{n}}\right\}$ is finite. To show this, suppose not. Then there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{k}}\right\} \subseteq\left(U_{\lambda_{1}} \cup \cdots \cup U_{\lambda_{n}}\right)^{c}$. Since $\left\{x_{n_{k}}\right\} \subseteq C$ and C is compact, there is a subsequence $\left\{x_{n_{k_{j}}}\right\}$ of $\left\{x_{n_{k}}\right\}$ (and hence a subsequence of $\left\{x_{n}\right\}$) such that $x_{n_{k_{j}}} \rightarrow x \in C$. But then x is a cluster point of $\left\{x_{n}\right\}$, so $x \in A$. This implies $x \in U_{\lambda_{1}} \cup \cdots \cup U_{\lambda_{n}}$, and thus $x \in U_{\lambda_{i}}$ for some λ_{i}. Since $U_{\lambda_{i}}$ is open, this implies there exists N such that $x_{n_{k_{j}}} \in U_{\lambda_{i}} \subseteq U_{\lambda_{1}} \cup \cdots \cup U_{\lambda_{n}}$ for all $n_{k_{j}}>N$. This is a contradiction, since $x_{n_{k_{j}}} \notin U_{\lambda_{1}} \cup \cdots \cup U_{\lambda_{n}}$ for all $n_{k_{j}}$ by construction.
Thus $\left\{n \in \mathbb{N}: x_{n} \notin U_{\lambda_{1}} \cup \cdots \cup U_{\lambda_{n}}\right\}$ is finite. Then let m_{1}, \ldots, m_{r} be these indexes, so

$$
\left\{x_{m_{1}}, \ldots, x_{m_{r}}\right\}=\left\{x_{n}\right\} \backslash\left(U_{\lambda_{1}} \cup \cdots \cup U_{\lambda_{n}}\right)
$$

Since \mathcal{U} is an open cover of $A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$, for each m_{i} there exists $U_{m_{i}} \in \mathcal{U}$ such that $x_{m_{i}} \in U_{m_{i}}$. Thus

$$
A \cup\left\{x_{n}: n \in \mathbb{N}\right\} \subseteq\left(U_{\lambda_{1}} \cup \cdots \cup U_{\lambda_{n}}\right) \cup\left(U_{m_{1}} \cup \cdots \cup U_{m_{r}}\right)
$$

Since \mathcal{U} was arbitrary, $A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ is compact.
Here is an alternative argument using sequential compactness. Let $\left\{y_{k}\right\}$ be a sequence such that $\left\{y_{k}\right\} \subseteq A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$. Then either $\left\{y_{k}\right\}$ has a subsequence in A or a subsequence in $\left\{x_{n}: n \in \mathbb{N}\right\}$. We consider these cases in turn.
Case 1: Suppose $\left\{y_{k}\right\}$ has a subsequence $\left\{y_{k_{j}}\right\} \subseteq A$. Then from above, A is compact, so $\left\{y_{k_{j}}\right\}$ has a further subsequence $\left\{y_{k_{j_{\ell}}}\right\}$, which is also a subsequence of $\left\{y_{k}\right\}$, such that $y_{k_{j_{\ell}}} \rightarrow y \in A \subseteq A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$.
Case 2: Suppose $\left\{y_{k}\right\}$ has a subsequence in $\left\{x_{n}: n \in \mathbb{N}\right\}$. Then there are two possible subcases.
Case 2a: $\left\{y_{k}\right\}$ has a constant subsequence $\left\{y_{k_{j}}\right\}$, so that $y_{k_{j}}=x_{m}$ for all k_{j}, for some fixed $x_{m} \in\left\{x_{n}: n \in \mathbb{N}\right\}$. In this case, $y_{k_{j}} \rightarrow x_{m} \in\left\{x_{n}: n \in \mathbb{N}\right\}$.
Case 2b: $\left\{y_{k}\right\}$ has a subsequence $\left\{y_{k_{j}}\right\}$ that is also a subsequence of $\left\{x_{n}\right\}$. In this case, since $\left\{y_{k_{j}}\right\} \subseteq C$ and C is compact, $\left\{y_{k_{j}}\right\}$ has a further subsequence $\left\{y_{k_{j_{\ell}}}\right\}$, which is also a subsequence of $\left\{y_{k}\right\}$ and of $\left\{x_{n}\right\}$, such that $y_{k_{j_{\ell}}} \rightarrow y \in C$. This implies y is a cluster point of $\left\{x_{n}\right\}$, so $y \in A$.
In each case, $\left\{y_{k}\right\}$ has a convergent subsequence that converges to an element of $A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$. Thus $A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ is sequentially compact, and hence compact.

Finally, another solution is to show that $A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ is closed. Since C is compact and $A \cup\left\{x_{n}: n \in \mathbb{N}\right\} \subseteq C$, using (a) and the assumption that $\left\{x_{n}\right\} \subseteq C$, this will imply that $A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ is compact. To show that $A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ is closed, let $\left\{y_{k}\right\}$ be a sequence such that $\left\{y_{k}\right\} \subseteq A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ and $y_{k} \rightarrow y$. Then we must show $y \in A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$. The argument is similar to the previous argument to show sequential compactness, considering the possible cases above.
6. (30) Let $a, b \in \mathbb{R}$ with $a \leq b$. Suppose $\varphi:[a, b] \rightarrow 2^{\mathbb{R}}$ is a continuous correspondence with nonempty, compact, convex values. Thus for every $x \in[a, b], \varphi(x) \subseteq \mathbb{R}$ is nonempty, compact, and convex. Define the function $f:[a, b] \rightarrow \mathbb{R}$ by

$$
f(x)=\frac{1}{2}(\sup \varphi(x)+\inf \varphi(x)) \quad \text { for each } x \in[a, b]
$$

a. Show that $f(x) \in \varphi(x)$ for each $x \in[a, b]$.

Solution: Fix $x \in[a, b]$. It suffices to show that $\sup \varphi(x) \in \varphi(x)$ and $\inf \varphi(x) \in$ $\varphi(x)$ since $\varphi(x)$ is convex. Then note that $\varphi(x) \subseteq \mathbb{R}$ is nonempty and compact, hence bounded, so $\sup \varphi(x)$ and $\inf \varphi(x)$ are both finite. Then for each $n \in \mathbb{N}$ there exists $y_{n} \in \varphi(x)$ such that

$$
\sup \varphi(x)-\frac{1}{n} \leq y_{n} \leq \varphi(x)
$$

So $y_{n} \rightarrow \sup \varphi(x)$ by construction. Then $\varphi(x)$ is compact, hence closed, and $\left\{y_{n}\right\} \subseteq \varphi(x)$, so $\sup \varphi(x) \in \varphi(x)$. The argument for $\inf \varphi(x)$ is similar. Therefore $f(x)=\frac{1}{2}(\sup \varphi(x)+\inf \varphi(x)) \in \varphi(x)$. Since $x \in[a, b]$ was arbitrary, this establishes the claim.
b. Show that f is continuous.

Solution: Let $g, h:[a, b] \rightarrow \mathbb{R}$ be given by

$$
g(x)=\sup \varphi(x) \quad \text { and } h(x)=\inf \varphi(x) \quad \text { for each } x \in[a, b]
$$

Then $f=\frac{1}{2}(g+h)$, so it suffices to show that g and h are continuous. To that end, let $x \in[a, b]$ and let $\varepsilon>0$. Then $(g(x)-\varepsilon, g(x)+\varepsilon)=(\sup \varphi(x)-\varepsilon, \sup \varphi(x)+\varepsilon)$ is open and $(\sup \varphi(x)-\varepsilon, \sup \varphi(x)+\varepsilon) \cap \varphi(x) \neq \emptyset$. Since φ is lhc, there exists an open set U_{1} with $x \in U_{1}$ such that for all $y \in U_{1} \cap[a, b]$,

$$
\varphi(y) \cap(\sup \varphi(x)-\varepsilon, \sup \varphi(x)+\varepsilon) \neq \emptyset
$$

Thus for all $y \in U_{1} \cap[a, b], \sup \varphi(y)>\sup \varphi(x)-\varepsilon$, that is, $g(y)>g(x)-\varepsilon$. Similarly, $V=(\inf \varphi(x)-\varepsilon, \sup \varphi(x)+\varepsilon)$ is an open set and $\varphi(x) \subseteq V$. Since φ is uhc, there exists an open set U_{2} with $x \in U_{2}$ such that for all $y \in U_{2} \cap[a, b]$,

$$
\varphi(y) \subseteq V=(\inf \varphi(x)-\varepsilon, \sup \varphi(x)+\varepsilon)
$$

Thus for all $y \in U_{2} \cap[a, b]$, $\sup \varphi(y)<\sup \varphi(x)+\varepsilon$, that is, $g(y)<g(x)+\varepsilon$. Let $U=U_{1} \cap U_{2}$. Then U is open, $x \in U$, and for all $y \in U \cap[a, b], g(y) \in$ $(g(x)-\varepsilon, g(x)+\varepsilon)$. Since U is open and $x \in U$, there exists $\delta>0$ such that $(x-\delta, x+\delta) \cap[a, b] \subseteq U$. For all $y \in(x-\delta, x+\delta) \cap[a, b], g(y) \in(g(x)-\varepsilon, g(x)+\varepsilon)$ by the previous argument. Since $\varepsilon>0$ and $x \in[a, b]$ were arbitrary, this implies g is continuous. The argument for h is similar. Therefore $f=\frac{1}{2}(g+h)$ is continuous.

Here is an alternative argument using the sequential characterizations of uhc and lhc. First note that φ is compact-valued, so the sequential characterization of
uhc is valid. Then let $x \in[a, b]$ and let $x_{n} \rightarrow x$. Fix $\varepsilon>0$. Since φ is lhc and $\sup \varphi(x) \in \varphi(x)$, for every n there exists $z_{n} \in \varphi\left(x_{n}\right)$ such that $z_{n} \rightarrow \sup \varphi(x)$. Then there exists N_{1} such that for all $n>N_{1}$,

$$
z_{n}>\sup \varphi(x)-\varepsilon
$$

Since $z_{n} \in \varphi\left(x_{n}\right)$ for each n, this implies

$$
\sup \varphi\left(x_{n}\right) \geq z_{n}>\sup \varphi(x)-\varepsilon \quad \forall n>N_{1}
$$

Then claim there exists N_{2} such that for all $n>N_{2}$,

$$
\sup \varphi\left(x_{n}\right)<\sup \varphi(x)+\varepsilon
$$

To see this, suppose not. Then there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\sup \varphi\left(x_{n_{k}}\right) \geq \sup \varphi(x)+\varepsilon \quad \forall n_{k}
$$

Then $x_{n_{k}} \rightarrow x$ and $\sup \varphi\left(x_{n_{k}}\right) \in \varphi\left(x_{n_{k}}\right)$ for each n_{k}. Since φ is uhc and compactvalued, this implies there must be a subsequence $\left\{\sup \varphi\left(x_{n_{k_{j}}}\right)\right\}$ of $\left\{\sup \varphi\left(x_{n_{k}}\right)\right\}$ that converges to an element $y \in \varphi(x)$. But $\sup \varphi\left(x_{n_{k_{j}}}\right) \geq \sup \varphi(x)+\varepsilon$ for all $n_{k_{j}}$, so if $\sup \varphi\left(x_{n_{k_{j}}}\right) \rightarrow y$, then $y \geq \sup \varphi(x)+\varepsilon$. This implies $y \notin \varphi(x)$. This is a contradiction.
So there exists N_{2} such that for all $n>N_{2}, \sup \varphi\left(x_{n}\right)<\sup \varphi(x)+\varepsilon$. Then let $N=\max \left(N_{1}, N_{2}\right)$. For all $n>N$,

$$
\sup \varphi\left(x_{n}\right) \in(\sup \varphi(x)-\varepsilon, \sup \varphi(x)+\varepsilon)
$$

Since $\varepsilon>0$ was arbitrary, this implies $\sup \varphi\left(x_{n}\right) \rightarrow \sup \varphi(x)$. Since $x \in[a, b]$ was arbitrary, this shows $g=\sup \varphi$ is continuous. The argument for $h=\inf \varphi$ is similar.
7. (30) Let (X, d) be a nonempty complete metric space, and let $f: X \rightarrow X$. Suppose there exists $\alpha \in\left(0, \frac{1}{2}\right)$ such that for all $x, y \in X$,

$$
d(f(x), f(y)) \leq \alpha(d(x, f(x))+d(y, f(y)))
$$

Show that f has a unique fixed point.
Solution: Let $x_{0} \in X$. Define $\left\{x_{n}\right\}$ by

$$
x_{n}=f\left(x_{n-1}\right) \quad \text { for each } n \in \mathbb{N}
$$

Now claim $\left\{x_{n}\right\}$ is a Cauchy sequence. To see this, first note that for each $n \in \mathbb{N}$,

$$
\begin{aligned}
d\left(x_{n+1}, x_{n}\right) & =d\left(f\left(x_{n}\right), f\left(x_{n-1}\right)\right) \\
& \leq \alpha\left(d\left(x_{n}, f\left(x_{n}\right)\right)+d\left(x_{n-1}, f\left(x_{n-1}\right)\right)\right) \\
& =\alpha\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{n-1}, x_{n}\right)\right)
\end{aligned}
$$

This implies

$$
(1-\alpha) d\left(x_{n+1}, x_{n}\right) \leq \alpha d\left(x_{n}, x_{n-1}\right)
$$

or

$$
d\left(x_{n+1}, x_{n}\right) \leq \frac{\alpha}{1-\alpha} d\left(x_{n}, x_{n-1}\right)
$$

Then let $\beta=\frac{\alpha}{1-\alpha}$. Since $\alpha \in\left(0, \frac{1}{2}\right), \beta \in(0,1)$, and from the above argument, $d\left(x_{n+1}, x_{n}\right) \leq \beta d\left(x_{n}, x_{n-1}\right)$ for each $n \in \mathbb{N}$. Then for each $n \in \mathbb{N}$, repeating yields

$$
\begin{aligned}
d\left(x_{n+1}, x_{n}\right) & \leq \beta d\left(x_{n}, x_{n-1}\right) \\
& \leq \beta^{2} d\left(x_{n-1}, x_{n-2}\right) \\
& \vdots \\
& \leq \beta^{n} d\left(x_{1}, x_{0}\right)
\end{aligned}
$$

Then fix $n, m \in \mathbb{N}$ with $n \geq m$.

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq d\left(x_{n}, x_{n-1}\right)+d\left(x_{n-1}, x_{n-2}\right)+\cdots+d\left(x_{m+1}, x_{m}\right) \\
& \leq\left(\beta^{n}+\beta^{n-1}+\cdots+\beta^{m}\right) d\left(x_{1}, x_{0}\right) \\
& =\sum_{k=m}^{n} \beta^{k} d\left(x_{1}, x_{0}\right) \\
& <\sum_{k=m}^{\infty} \beta^{k} d\left(x_{1}, x_{0}\right) \\
& =\frac{\beta^{m}}{1-\beta} d\left(x_{1}, x_{0}\right)
\end{aligned}
$$

Then let $\varepsilon>0$. Since $\frac{\beta^{m}}{1-\beta} d\left(x_{1}, x_{0}\right) \rightarrow 0$ as $m \rightarrow \infty$, choose N such that for all $m>N$, $\frac{\beta^{m}}{1-\beta} d\left(x_{1}, x_{0}\right)<\varepsilon$. Then if $n, m>N$ with $n \geq m$,

$$
d\left(x_{n}, x_{m}\right) \leq \frac{\beta^{m}}{1-\beta} d\left(x_{1}, x_{0}\right)<\varepsilon
$$

Thus $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is complete, there exists $x^{*} \in X$ such that $x_{n} \rightarrow x^{*}$.
Now claim that $f\left(x^{*}\right)=x^{*}$. To see this, note that for each $n \in \mathbb{N}$,

$$
\begin{aligned}
d\left(f\left(x_{n}\right), f\left(x^{*}\right)\right) & \leq \alpha\left(d\left(x_{n}, f\left(x_{n}\right)\right)+d\left(x^{*}, f\left(x^{*}\right)\right)\right) \\
& =\alpha\left(d\left(x_{n}, x_{n+1}\right)+d\left(x^{*}, f\left(x^{*}\right)\right)\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
d\left(x_{n+1}, f\left(x^{*}\right)\right)=d\left(f\left(x_{n}\right), f\left(x^{*}\right)\right) & \leq \alpha\left(d\left(x_{n}, x_{n+1}\right)+d\left(x^{*}, f\left(x^{*}\right)\right)\right) \\
& \leq \alpha\left(\beta^{n} d\left(x_{1}, x_{0}\right)+d\left(x^{*}, f\left(x^{*}\right)\right)\right)
\end{aligned}
$$

Then note that $\beta^{n} d\left(x_{1}, x_{0}\right) \rightarrow 0$ as $n \rightarrow \infty$, and since $x_{n} \rightarrow x^{*}$ and the metric d is continuous, $d\left(x_{n+1}, f\left(x^{*}\right)\right) \rightarrow d\left(x^{*}, f\left(x^{*}\right)\right)$. Putting these together with the previous inequality implies

$$
d\left(x^{*}, f\left(x^{*}\right)\right) \leq \alpha d\left(x^{*}, f\left(x^{*}\right)\right)
$$

Since $\alpha \in\left(0, \frac{1}{2}\right)$, this implies $d\left(x^{*}, f\left(x^{*}\right)\right)=0$. Thus $x^{*}=f\left(x^{*}\right)$, that is, x^{*} is a fixed point of f.
Finally, to show f has a unique fixed point, suppose $y^{*} \in X$ and $f\left(y^{*}\right)=y^{*}$. Then

$$
d\left(x^{*}, y^{*}\right)=d\left(f\left(x^{*}\right), f\left(y^{*}\right)\right) \leq \alpha\left(d\left(x^{*}, f\left(x^{*}\right)\right)+d\left(y^{*}, f\left(y^{*}\right)\right)\right)=0
$$

Since $\alpha>0$, this implies $d\left(x^{*}, y^{*}\right)=0$, thus $x^{*}=y^{*}$.

