Economics 204 Summer /Fall 2021
Final Exam — Suggested Solutions

Answer all of the questions below. Be as complete, correct, and concise as possible. There
are 7 questions for a total of 180 points possible; point values for each problem are in
parentheses. For questions with subparts, each subpart is worth the same number of points.
Use the points as a guide to allocating your time.

1. (15) Let D be an n x n matrix that is diagonal, so d;; = 0 for all ¢ # j, where d;;
is the 5% entry of the matrix D (an n x n matrix M is diagonal if m;; = 0 for all
i # j, where m;; denotes the ij' entry of M). Show that for every k € N, D* is also a
diagonal matrix (where M* denotes the product of k copies of the n x n matrix M).

(Hint: use induction.)

Solution: For the base case k = 1, the claim follows by definition: D is a diagonal
matrix. For the induction hypothesis, assume that the claim is true for some k£ > 1, so
D* is a diagonal matrix. Then for k + 1,

Dk-l—l — DkD

Let A = D*¥!' and B = D* so A = BD. Then by the induction hypothesis, B is
diagonal. Let b; denote the i row of B and d; denote the j”* column of D. Then
aij = b; - d;, where a;; is the ij' element of the matrix A. Since B and D are both
diagonal matrices, bz = 0 for all ¢ # k and di; = 0 for all k£ # j. Then by definition

k=1

This implies A = D*+! is a diagonal matrix by definition. Thus by induction, D* is a
diagonal matrix for all £ € N.

2. (15) Let (X,d) be a metric space and f,g : X — R be continuous functions. Let
C={xeX: f(xr) >g(x)}. Show that C' is a closed set.

Solution: Let h: X — R be given by h = f — g. Then note that h is continuous,
because f and g are continuous, and

C={reX: f(z)2g(r)} ={r e X: h(z) = f(z) - g(x) > 0}

Thus C' = h71([0, 00)). Since [0, 00) C R is closed and h is continuous, C' = h~([0, 00))
is closed.



3. (30) Let X be a vector space over the field F', and let V' be a proper subset of X, so
V C X and V # X. Suppose V is linearly independent. Show that V is a basis for X

if and only if every proper superset of V' is linearly dependent, that is, if and only if
for every subset W C X such that V C W and V # W, W is linearly dependent.

Solution: First suppose V is a basis for X. Then let W C X such that V' C W and
V #W. Let x € W\ V. Then since V is a basis for X, there exist vy,...,v, € V and
ai,...,q, € F such that
Xr = Z Q;U;
i=1

Thus .
0= —x+ Z o, U;
i=1

Since VC W and x € W, {z,vy,...,v,} C W. The coefficients above are not all zero;
in particular, —1 # 0. So W is linearly dependent.

For the converse, to show that V' is a basis, let x € X \ V. Then let W =V U{z}. By
construction V-C W and V # W so by assumption W is linearly dependent. Since V
is linearly independent, there exists ag, aq, . .., a, not all zero and vy, ..., v, € V such
that

aox + Z a;v; =0
i=1
and in addition, it must be that ag # 0. Then this implies

n
— QT = E Q;U;
=1

or
n

Q;
r = ——;
-1 0
Thus z € span V. Since x € X \ V was arbitrary, V spans X. Since V is linearly
independent by assumption, V is a basis for X.

4. (30) Let a,b € R with a < b, and f : [a,b] — R. Suppose f is continuous on [a, b] and
differentiable on (a, b). Show that if f'(x) # 0 for all x € (a,b) then f is one-to-one.

Solution: Let x,y € [a,b] such that x # y. Without loss of generality, take x < y.
Then [z,y] C [a,b], so f is continuous on [z,y] and differentiable on (x,y). By the
Mean Value Theorem, there exists z € (z,y) such that

fy) = f@) = f'(2)(y —x)

By assumption, f'(z) # 0, and y —x # 0, so f(y) — f(z) # 0, or f(y) # f(x). Since
x,y € |a,b] were arbitrary, this implies that f is one-to-one.



5. (30) Let (X, d) be a metric space and C' C X be compact. Let {x,} C C be a sequence
and let A be the set of cluster points of {x,}.

a. Show that A is closed and A C C.

Solution: To show that A is closed, let {yx} C A such that yy — y. It suffices
to show y € A, that is, that y is a cluster point of {z,}. Then let € > 0. Since
yr — Yy, there exists K such that for all £k > K, y, € B%(y) Then fix £ > K.
Since yx € A, yy is a cluster point of {z,,}. So by definition {n € N: z,, € Bg(yx)}
is infinite. Then let x,, € Bg (yx).-

e f_,
2 2
Thus
{neN:x, € Bs(yx)} C{n €N:z, € B:(y)}

This implies {n € N : z,, € B.(y)} is infinite. Since ¢ > 0 was arbitrary, this
implies y is a cluster point of {z,} by definition, so y € A.

To show that A C C, let x € A. Since z is a cluster point of {x,}, there is a
subsequence {z,, } of {x,} such that x,, — z. Then {z,} C C by assumption,
so {zn,} C C. Since C' is a compact subset of a metric space, C' is closed. Thus
zeC. Thus A CC.

Here is an alternative argument to show A is closed using the subsequence charac-
terization of cluster points. Let {yx} C A be a sequence such that yx — y. Then
for each m there exists y, such that y,, € B L (y). Now construct a subsequence

of {z,} inductively as follows.
For j = 1, choose z,, such that z,, € B%(ykl). This is possible because yg, is

a cluster point of {z,}. Now suppose n; > n;_; > ... > ny have been chosen
so that such that z,, € B%(yki) for each 7. Then choose n;i1 > n; such that

Ty € BZ(J;H) (Yk;.,). Again this is possible because yy,,, is a cluster point of

Then {z,,} is a subsequence of {z,} and for each j, z,, € B%(ykj). Using the

triangle inequality and the choice of y;, above, this implies x,,;, € B1(y) for each

J. Then by construction, x,, — y. Thus y is a cluster point of {z,}, that is,
y € A.

b. Show that AU {x, : n € N} is compact.
(Hint: Use the open cover definition of compactness.)

Solution: Let U = {U, : A € A} be an open cover of AU {z, : n € N}. From
(a), A is closed and A C C'. Since C'is compact, this implies A is compact. Then
U is an open cover of A, so there exist Uy,,...,U,, € U such that

ACU, U---UU,,
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Now claim {n € N : x,, & Uy, U- - -UU,,, } is finite. To show this, suppose not. Then
there is a subsequence {z,, } of {z,} such that {x,, } C (U, U---UU,,)°. Since
{zn,} € C and C is compact, there is a subsequence {Ink]} of {zn,} (and hence
a subsequence of {z,}) such that Tny,, = T € C'. But then z is a cluster point of
{z,}, so x € A. This implies x € Uy, U---UU,,, and thus z € U,, for some ;.
Since Uy, is open, this implies there exists N such that Ty, € Uy, CU\U---UU,,
for all ny, > N. This is a contradiction, since Ty, Z Uy, U---UU,, for all ny; by
construction.

Thus {n € N : z, &€ Uy, U---UU,,} is finite. Then let my,..., m, be these
indexes, so

{Tmys ooy} ={xn} \ (U, U---UU,,)

Since U is an open cover of AU {x, : n € N}, for each m; there exists U,,, € U
such that x,,, € U,,,. Thus

AU{z, :neN}C (Uy,U---UUy,)UUp, U---UUp,)
Since U was arbitrary, AU {z, : n € N} is compact.

Here is an alternative argument using sequential compactness. Let {y;} be a
sequence such that {yx} C AU{x, : n € N}. Then either {yx} has a subsequence
in A or a subsequence in {z, : n € N}. We consider these cases in turn.

Case 1: Suppose {y:} has a subsequence {y;,} € A. Then from above, A is
compact, so {yy; } has a further subsequence {yx, }, which is also a subsequence
of {yx}, such that Yk, > Y € ACAU{x, :neN}

Case 2: Suppose {y;} has a subsequence in {z, : n € N}. Then there are two
possible subcases.

Case 2a: {y:} has a constant subsequence {yy,}, so that y,, = x,, for all k;,
for some fixed z,, € {x, : n € N}. In this case, yr, = zn € {2, : n € N}.

Case 2b: {y,} has a subsequence {y,} that is also a subsequence of {z,}. In
this case, since {yx;} € C and C is compact, {y,} has a further subsequence
{Yk;, }, which is also a subsequence of {y;} and of {z,}, such that y;,, —y € C.
This implies y is a cluster point of {z,}, so y € A.

In each case, {yx} has a convergent subsequence that converges to an element of
AU{z, : n € N}. Thus AU {z, : n € N} is sequentially compact, and hence
compact.

Finally, another solution is to show that A U {x, : n € N} is closed. Since C'is
compact and AU{z,, : n € N} C C, using (a) and the assumption that {z,} C C,
this will imply that AU {z, : n € N} is compact. To show that AU {x, : n € N}
is closed, let {yx} be a sequence such that {yx} € AU {z, : n € N} and y — v.
Then we must show y € AU{z,, : n € N}. The argument is similar to the previous
argument to show sequential compactness, considering the possible cases above.



6. (30) Let a,b € R with a < b. Suppose ¢ : [a,b] — 2% is a continuous correspondence
with nonempty, compact, convex values. Thus for every z € [a,b], p(z) C R is
nonempty, compact, and convex. Define the function f : [a,b] — R by

flz) = % (sup p(z) +inf p(x)) for each = € [a, b]

a. Show that f(x) € ¢(x) for each x € [a, b].
Solution: Fix x € [a,b]. It suffices to show that sup ¢(x) € ¢(x) and inf p(z) €
p(z) since ¢(x) is convex. Then note that ¢(z) C R is nonempty and compact,
hence bounded, so sup ¢(x) and inf p(z) are both finite. Then for each n € N
there exists y, € ¢(z) such that

1
sup ¢(z) — ~ S Un S o(z)

So y, — supe(z) by construction. Then ¢(z) is compact, hence closed, and
{yn} C w(z), so supp(z) € p(x). The argument for inf p(x) is similar. There-
fore f(z) = 3(sup p(z) + inf ¢(z)) € @(z). Since z € [a,b] was arbitrary, this
establishes the claim.

b. Show that f is continuous.
Solution: Let g, h: [a,b] — R be given by

g(x) =supp(z) and h(x) =infp(z) for each z € [a,b)

Then f = %(g+h), so it suffices to show that g and h are continuous. To that end,
let z € [a,b] and let € > 0. Then (g(z) —¢, g(x)+¢) = (sup ¢(x) —¢€,sup p(x) +¢)
is open and (sup p(z) — e, sup(x) + ) Np(x) # B. Since ¢ is lhe, there exists
an open set Uy with x € U; such that for all y € Uy N [a, b],

@(y) N (sup p(z) —&,sup p(x) +¢) # 0

Thus for all y € Uy N [a,b], supp(y) > supp(x) — ¢, that is, g(y) > g(z) — e.
Similarly, V' = (inf p(z) — €,sup p(x) + €) is an open set and ¢(x) C V. Since ¢
is uhc, there exists an open set Uy with x € Us such that for all y € Uy N [a, b],

o(y) CV = (inf p(x) — &,sup p(r) + €)

Thus for all y € Uy N a,b], supe(y) < supe(x) + €, that is, g(y) < g(x) + «.
Let U = Uy NUs. Then U is open, x € U, and for all y € U N[a,b], g(y) €
(9(z) —e,9(x) + ). Since U is open and = € U, there exists § > 0 such that
(x—0,z+d)N]a,b] CU. Forally € (x—d,z+5)N|a,b], g(y) € (g(x)—e, g(x)+¢)
by the previous argument. Since ¢ > 0 and = € [a, b] were arbitrary, this implies g
is continuous. The argument for & is similar. Therefore f = 1(g+h) is continuous.

Here is an alternative argument using the sequential characterizations of uhc and
lhe. First note that ¢ is compact-valued, so the sequential characterization of

bt



uhc is valid. Then let € [a,b] and let x,, — z. Fix € > 0. Since ¢ is lhc and
sup p(x) € p(x), for every n there exists z, € ¢(x,) such that z, — sup ¢(z).
Then there exists N; such that for all n > Ny,

Zp > supp(x) — ¢
Since z, € p(x,) for each n, this implies
sup p(z,) > 2z, >supp(x) —e Vn >N
Then claim there exists Ny such that for all n > Ny,
sup ¢(z,) < supp(x) + ¢
To see this, suppose not. Then there is a subsequence {z,, } of {x,} such that
sup o(xy,, ) > sup p(x) +&  Vny

Then x,, — « and sup ¢(z,,) € ¢(x,,) for each ny. Since ¢ is uhc and compact-
valued, this implies there must be a subsequence {sup gp(:cnkj)} of {sup p(zn,)}
that converges to an element y € ¢(x). But sup gp(a:nkj) > sup ¢(x) + € for all
n;, so if sup gp(a:nkj) — y, then y > sup p(x) + €. This implies y & p(z). This is
a contradiction.

So there exists Ny such that for all n > Ny, sup p(x,) < sup p(z) + . Then let
N = max(Ny, Ny). For alln > N,

sup ¢(an) € (supp(x) — &, sup p(z) + ¢)

Since £ > 0 was arbitrary, this implies sup ¢(z,) — supp(z). Since z € [a, b
was arbitrary, this shows g = sup ¢ is continuous. The argument for h = inf ¢ is
similar.

7. (30) Let (X,d) be a nonempty complete metric space, and let f : X — X. Suppose

there exists a € (0, 3) such that for all z,y € X,

d(f(x), f(y)) < a(d(z, f(x)) +dy, f()))

Show that f has a unique fixed point.
Solution: Let zg € X. Define {z,} by

xn = f(xy—1) for eachn € N

Now claim {z,} is a Cauchy sequence. To see this, first note that for each n € N,

d(l’n+1, lﬁ) = d(f(l’n), f(l'n—l))
< a(d(xy, f(xn)) + d(@n-1, f(Tn-1)))
= a(d(zn, Tps1) + d(Tn-1,2))

6



This implies
(1 - a)d(zns1, Tn) < ad(Tn, Tp-1)

or

(6]
d(Tpy1,Tn) < ﬁd(fm Tpo1)

Then let 3 = %=. Since a € (0 1), B € (0,1), and from the above argument,

—a )

d(Tpi1,xy) < Bd(zp, x,—1) for each n € N. Then for each n € N, repeating yields

ﬁd(fm ZEn—l)
ﬁzd(fn—la $n—2)

d($n+1 ) fn) S
<

B"d(x1, x0)
Then fix n,m € N with n > m.

d(fny lﬁ—l) + d(££n—1> $n—2) + -+ d($m+1> fm)
(6" + " 4 -+ 8™)d(1, 0)

= Y (1, x0)
k=m

d(xp, Tm)

IA A

< Z ﬁkd(l’l, 1’0)
k=m

= —d(iﬂl,iﬂo)

1-p
Then let € > 0. Since %d(zl, xo9) — 0 as m — oo, choose N such that for all m > N,
f_—mﬁd(zl,zo) < e. Then if n,m > N with n > m,

d(xp, Tm) < ﬁ—d(:vl,:vo) <e

1.3
Thus {z,} is a Cauchy sequence. Since X is complete, there exists 2* € X such that
T, — .

Now claim that f(xz*) = z*. To see this, note that for each n € N,

d(f(zn), f(27) < ald(an, f(za)) +d(2, f(27)))
= a(d(@n, Tnga) +d(@7, f(27)))

Thus

a (d(@n, Tnia) +d(z7, f(27)))
a (8"d(x, wo) + d(z”, f(27)))

d(znir, f(x7)) = d(f(xn), f(27))

IA A



Then note that §"d(zy,x0) — 0 as n — oo, and since x,, — z* and the metric d is
continuous, d(x,41, f(z*)) — d(z*, f(z*)). Putting these together with the previous
inequality implies

d(z”, f(27)) < ad(z”, f(27))

Since o € (0, 3), this implies d(z*, f(z*)) = 0. Thus z* = f(z*), that is, 2* is a fixed
point of f.

Finally, to show f has a unique fixed point, suppose y* € X and f(y*) = y*. Then

d(a®,y*) = d(f(z%), f(y")) < a(d(z, f(27)) +d(y", f(y")) = 0

Since o > 0, this implies d(z*, y*) = 0, thus z* = y*.



