
Economics 204 Summer/Fall 2021
Final Exam – Suggested Solutions

Answer all of the questions below. Be as complete, correct, and concise as possible. There
are 7 questions for a total of 180 points possible; point values for each problem are in
parentheses. For questions with subparts, each subpart is worth the same number of points.
Use the points as a guide to allocating your time.

1. (15) Let D be an n × n matrix that is diagonal, so dij = 0 for all i 6= j, where dij

is the ijth entry of the matrix D (an n × n matrix M is diagonal if mij = 0 for all
i 6= j, where mij denotes the ijth entry of M). Show that for every k ∈ N, Dk is also a
diagonal matrix (where Mk denotes the product of k copies of the n × n matrix M).

(Hint: use induction.)

Solution: For the base case k = 1, the claim follows by definition: D is a diagonal
matrix. For the induction hypothesis, assume that the claim is true for some k ≥ 1, so
Dk is a diagonal matrix. Then for k + 1,

Dk+1 = DkD

Let A = Dk+1 and B = Dk, so A = BD. Then by the induction hypothesis, B is
diagonal. Let bi denote the ith row of B and dj denote the jth column of D. Then
aij = bi · dj , where aij is the ijth element of the matrix A. Since B and D are both
diagonal matrices, bik = 0 for all i 6= k and dkj = 0 for all k 6= j. Then by definition

aij = bi · dj =
n∑

k=1

bikdkj = 0 ∀i 6= j

This implies A = Dk+1 is a diagonal matrix by definition. Thus by induction, Dk is a
diagonal matrix for all k ∈ N.

2. (15) Let (X, d) be a metric space and f, g : X → R be continuous functions. Let
C = {x ∈ X : f(x) ≥ g(x)}. Show that C is a closed set.

Solution: Let h : X → R be given by h = f − g. Then note that h is continuous,
because f and g are continuous, and

C = {x ∈ X : f(x) ≥ g(x)} = {x ∈ X : h(x) = f(x) − g(x) ≥ 0}

Thus C = h−1([0,∞)). Since [0,∞) ⊆ R is closed and h is continuous, C = h−1([0,∞))
is closed.
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3. (30) Let X be a vector space over the field F , and let V be a proper subset of X, so
V ⊆ X and V 6= X. Suppose V is linearly independent. Show that V is a basis for X

if and only if every proper superset of V is linearly dependent, that is, if and only if
for every subset W ⊆ X such that V ⊆ W and V 6= W , W is linearly dependent.

Solution: First suppose V is a basis for X. Then let W ⊆ X such that V ⊆ W and
V 6= W . Let x ∈ W \ V . Then since V is a basis for X, there exist v1, . . . , vn ∈ V and
α1, . . . , αn ∈ F such that

x =
n∑

i=1

αivi

Thus

0 = −x +
n∑

i=1

αivi

Since V ⊆ W and x ∈ W , {x, v1, . . . , vn} ⊆ W . The coefficients above are not all zero;
in particular, −1 6= 0. So W is linearly dependent.

For the converse, to show that V is a basis, let x ∈ X \V . Then let W = V ∪ {x}. By
construction V ⊆ W and V 6= W , so by assumption W is linearly dependent. Since V

is linearly independent, there exists α0, α1, . . . , αn not all zero and v1, . . . , vn ∈ V such
that

α0x +

n∑

i=1

αivi = 0

and in addition, it must be that α0 6= 0. Then this implies

−α0x =

n∑

i=1

αivi

or

x =
n∑

i=1

−
αi

α0

vi

Thus x ∈ span V . Since x ∈ X \ V was arbitrary, V spans X. Since V is linearly
independent by assumption, V is a basis for X.

4. (30) Let a, b ∈ R with a < b, and f : [a, b] → R. Suppose f is continuous on [a, b] and
differentiable on (a, b). Show that if f ′(x) 6= 0 for all x ∈ (a, b) then f is one-to-one.

Solution: Let x, y ∈ [a, b] such that x 6= y. Without loss of generality, take x < y.
Then [x, y] ⊆ [a, b], so f is continuous on [x, y] and differentiable on (x, y). By the
Mean Value Theorem, there exists z ∈ (x, y) such that

f(y) − f(x) = f ′(z)(y − x)

By assumption, f ′(z) 6= 0, and y − x 6= 0, so f(y) − f(x) 6= 0, or f(y) 6= f(x). Since
x, y ∈ [a, b] were arbitrary, this implies that f is one-to-one.
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5. (30) Let (X, d) be a metric space and C ⊆ X be compact. Let {xn} ⊆ C be a sequence
and let A be the set of cluster points of {xn}.

a. Show that A is closed and A ⊆ C .

Solution: To show that A is closed, let {yk} ⊆ A such that yk → y. It suffices
to show y ∈ A, that is, that y is a cluster point of {xn}. Then let ε > 0. Since
yk → y, there exists K such that for all k > K, yk ∈ B ε

2
(y). Then fix k > K.

Since yk ∈ A, yk is a cluster point of {xn}. So by definition {n ∈ N : xn ∈ B ε
2
(yk)}

is infinite. Then let xn ∈ B ε
2
(yk).

d(xn, y) ≤ d(xn, yk) + d(yk, y)

<
ε

2
+

ε

2
= ε

Thus
{n ∈ N : xn ∈ B ε

2
(yk)} ⊆ {n ∈ N : xn ∈ Bε(y)}

This implies {n ∈ N : xn ∈ Bε(y)} is infinite. Since ε > 0 was arbitrary, this
implies y is a cluster point of {xn} by definition, so y ∈ A.

To show that A ⊆ C , let x ∈ A. Since x is a cluster point of {xn}, there is a
subsequence {xnk

} of {xn} such that xnk
→ x. Then {xn} ⊆ C by assumption,

so {xnk
} ⊆ C . Since C is a compact subset of a metric space, C is closed. Thus

x ∈ C . Thus A ⊆ C .

Here is an alternative argument to show A is closed using the subsequence charac-
terization of cluster points. Let {yk} ⊆ A be a sequence such that yk → y. Then
for each m there exists ykm such that ykm ∈ B 1

2m
(y). Now construct a subsequence

of {xn} inductively as follows.

For j = 1, choose xn1 such that xn1 ∈ B 1
2
(yk1). This is possible because yk1 is

a cluster point of {xn}. Now suppose nj > nj−1 > . . . > n1 have been chosen
so that such that xni

∈ B 1
2i

(yki
) for each i. Then choose nj+1 > nj such that

xnj+1 ∈ B 1
2(j+1)

(ykj+1). Again this is possible because ykj+1 is a cluster point of

{xn}.

Then {xnj
} is a subsequence of {xn} and for each j, xnj

∈ B 1
2j

(ykj
). Using the

triangle inequality and the choice of ykj
above, this implies xnj

∈ B 1
j
(y) for each

j. Then by construction, xnj
→ y. Thus y is a cluster point of {xn}, that is,

y ∈ A.

b. Show that A ∪ {xn : n ∈ N} is compact.

(Hint: Use the open cover definition of compactness.)

Solution: Let U = {Uλ : λ ∈ Λ} be an open cover of A ∪ {xn : n ∈ N}. From
(a), A is closed and A ⊆ C . Since C is compact, this implies A is compact. Then
U is an open cover of A, so there exist Uλ1, . . . , Uλn ∈ U such that

A ⊆ Uλ1 ∪ · · · ∪ Uλn
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Now claim {n ∈ N : xn 6∈ Uλ1∪· · ·∪Uλn} is finite. To show this, suppose not. Then
there is a subsequence {xnk

} of {xn} such that {xnk
} ⊆ (Uλ1 ∪ · · · ∪ Uλn)c. Since

{xnk
} ⊆ C and C is compact, there is a subsequence {xnkj

} of {xnk
} (and hence

a subsequence of {xn}) such that xnkj
→ x ∈ C . But then x is a cluster point of

{xn}, so x ∈ A. This implies x ∈ Uλ1 ∪ · · · ∪ Uλn, and thus x ∈ Uλi
for some λi.

Since Uλi
is open, this implies there exists N such that xnkj

∈ Uλi
⊆ Uλ1∪· · ·∪Uλn

for all nkj
> N . This is a contradiction, since xnkj

6∈ Uλ1 ∪ · · · ∪Uλn for all nkj
by

construction.

Thus {n ∈ N : xn 6∈ Uλ1 ∪ · · · ∪ Uλn} is finite. Then let m1, . . . , mr be these
indexes, so

{xm1, . . . , xmr} = {xn} \ (Uλ1 ∪ · · · ∪ Uλn)

Since U is an open cover of A ∪ {xn : n ∈ N}, for each mi there exists Umi
∈ U

such that xmi
∈ Umi

. Thus

A ∪ {xn : n ∈ N} ⊆ (Uλ1 ∪ · · · ∪ Uλn) ∪ (Um1 ∪ · · · ∪ Umr)

Since U was arbitrary, A ∪ {xn : n ∈ N} is compact.

Here is an alternative argument using sequential compactness. Let {yk} be a
sequence such that {yk} ⊆ A∪{xn : n ∈ N}. Then either {yk} has a subsequence
in A or a subsequence in {xn : n ∈ N}. We consider these cases in turn.

Case 1: Suppose {yk} has a subsequence {ykj
} ⊆ A. Then from above, A is

compact, so {ykj
} has a further subsequence {ykj`

}, which is also a subsequence
of {yk}, such that ykj`

→ y ∈ A ⊆ A ∪ {xn : n ∈ N}.

Case 2: Suppose {yk} has a subsequence in {xn : n ∈ N}. Then there are two
possible subcases.

Case 2a: {yk} has a constant subsequence {ykj
}, so that ykj

= xm for all kj,
for some fixed xm ∈ {xn : n ∈ N}. In this case, ykj

→ xm ∈ {xn : n ∈ N}.

Case 2b: {yk} has a subsequence {ykj
} that is also a subsequence of {xn}. In

this case, since {ykj
} ⊆ C and C is compact, {ykj

} has a further subsequence
{ykj`

}, which is also a subsequence of {yk} and of {xn}, such that ykj`
→ y ∈ C .

This implies y is a cluster point of {xn}, so y ∈ A.

In each case, {yk} has a convergent subsequence that converges to an element of
A ∪ {xn : n ∈ N}. Thus A ∪ {xn : n ∈ N} is sequentially compact, and hence
compact.

Finally, another solution is to show that A ∪ {xn : n ∈ N} is closed. Since C is
compact and A∪{xn : n ∈ N} ⊆ C , using (a) and the assumption that {xn} ⊆ C ,
this will imply that A ∪ {xn : n ∈ N} is compact. To show that A∪ {xn : n ∈ N}
is closed, let {yk} be a sequence such that {yk} ⊆ A ∪ {xn : n ∈ N} and yk → y.
Then we must show y ∈ A∪{xn : n ∈ N}. The argument is similar to the previous
argument to show sequential compactness, considering the possible cases above.
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6. (30) Let a, b ∈ R with a ≤ b. Suppose ϕ : [a, b] → 2R is a continuous correspondence
with nonempty, compact, convex values. Thus for every x ∈ [a, b], ϕ(x) ⊆ R is
nonempty, compact, and convex. Define the function f : [a, b] → R by

f(x) =
1

2
(sup ϕ(x) + inf ϕ(x)) for each x ∈ [a, b]

a. Show that f(x) ∈ ϕ(x) for each x ∈ [a, b].

Solution: Fix x ∈ [a, b]. It suffices to show that sup ϕ(x) ∈ ϕ(x) and inf ϕ(x) ∈
ϕ(x) since ϕ(x) is convex. Then note that ϕ(x) ⊆ R is nonempty and compact,
hence bounded, so sup ϕ(x) and inf ϕ(x) are both finite. Then for each n ∈ N

there exists yn ∈ ϕ(x) such that

sup ϕ(x) −
1

n
≤ yn ≤ ϕ(x)

So yn → sup ϕ(x) by construction. Then ϕ(x) is compact, hence closed, and
{yn} ⊆ ϕ(x), so sup ϕ(x) ∈ ϕ(x). The argument for inf ϕ(x) is similar. There-
fore f(x) = 1

2
(sup ϕ(x) + inf ϕ(x)) ∈ ϕ(x). Since x ∈ [a, b] was arbitrary, this

establishes the claim.

b. Show that f is continuous.

Solution: Let g, h : [a, b] → R be given by

g(x) = supϕ(x) and h(x) = inf ϕ(x) for each x ∈ [a, b]

Then f = 1

2
(g+h), so it suffices to show that g and h are continuous. To that end,

let x ∈ [a, b] and let ε > 0. Then (g(x)−ε, g(x)+ε) = (sup ϕ(x)−ε, sup ϕ(x)+ε)
is open and (supϕ(x) − ε, sup ϕ(x) + ε) ∩ ϕ(x) 6= ∅. Since ϕ is lhc, there exists
an open set U1 with x ∈ U1 such that for all y ∈ U1 ∩ [a, b],

ϕ(y) ∩ (sup ϕ(x) − ε, sup ϕ(x) + ε) 6= ∅

Thus for all y ∈ U1 ∩ [a, b], sup ϕ(y) > supϕ(x) − ε, that is, g(y) > g(x) − ε.
Similarly, V = (inf ϕ(x) − ε, sup ϕ(x) + ε) is an open set and ϕ(x) ⊆ V . Since ϕ

is uhc, there exists an open set U2 with x ∈ U2 such that for all y ∈ U2 ∩ [a, b],

ϕ(y) ⊆ V = (inf ϕ(x) − ε, sup ϕ(x) + ε)

Thus for all y ∈ U2 ∩ [a, b], sup ϕ(y) < supϕ(x) + ε, that is, g(y) < g(x) + ε.
Let U = U1 ∩ U2. Then U is open, x ∈ U , and for all y ∈ U ∩ [a, b], g(y) ∈
(g(x) − ε, g(x) + ε). Since U is open and x ∈ U , there exists δ > 0 such that
(x−δ, x+δ)∩ [a, b] ⊆ U . For all y ∈ (x−δ, x+δ)∩ [a, b], g(y) ∈ (g(x)−ε, g(x)+ε)
by the previous argument. Since ε > 0 and x ∈ [a, b] were arbitrary, this implies g

is continuous. The argument for h is similar. Therefore f = 1

2
(g+h) is continuous.

Here is an alternative argument using the sequential characterizations of uhc and
lhc. First note that ϕ is compact-valued, so the sequential characterization of
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uhc is valid. Then let x ∈ [a, b] and let xn → x. Fix ε > 0. Since ϕ is lhc and
sup ϕ(x) ∈ ϕ(x), for every n there exists zn ∈ ϕ(xn) such that zn → sup ϕ(x).
Then there exists N1 such that for all n > N1,

zn > sup ϕ(x)− ε

Since zn ∈ ϕ(xn) for each n, this implies

supϕ(xn) ≥ zn > supϕ(x) − ε ∀n > N1

Then claim there exists N2 such that for all n > N2,

sup ϕ(xn) < supϕ(x) + ε

To see this, suppose not. Then there is a subsequence {xnk
} of {xn} such that

sup ϕ(xnk
) ≥ sup ϕ(x) + ε ∀nk

Then xnk
→ x and sup ϕ(xnk

) ∈ ϕ(xnk
) for each nk. Since ϕ is uhc and compact-

valued, this implies there must be a subsequence {sup ϕ(xnkj
)} of {sup ϕ(xnk

)}

that converges to an element y ∈ ϕ(x). But supϕ(xnkj
) ≥ sup ϕ(x) + ε for all

nkj
, so if supϕ(xnkj

) → y, then y ≥ sup ϕ(x) + ε. This implies y 6∈ ϕ(x). This is

a contradiction.

So there exists N2 such that for all n > N2, sup ϕ(xn) < sup ϕ(x) + ε. Then let
N = max(N1, N2). For all n > N ,

sup ϕ(xn) ∈ (sup ϕ(x)− ε, sup ϕ(x) + ε)

Since ε > 0 was arbitrary, this implies sup ϕ(xn) → supϕ(x). Since x ∈ [a, b]
was arbitrary, this shows g = sup ϕ is continuous. The argument for h = inf ϕ is
similar.

7. (30) Let (X, d) be a nonempty complete metric space, and let f : X → X. Suppose
there exists α ∈ (0, 1

2
) such that for all x, y ∈ X,

d(f(x), f(y)) ≤ α (d(x, f(x)) + d(y, f(y)))

Show that f has a unique fixed point.

Solution: Let x0 ∈ X. Define {xn} by

xn = f(xn−1) for each n ∈ N

Now claim {xn} is a Cauchy sequence. To see this, first note that for each n ∈ N,

d(xn+1, xn) = d(f(xn), f(xn−1))

≤ α (d(xn, f(xn)) + d(xn−1, f(xn−1)))

= α (d(xn, xn+1) + d(xn−1, xn))
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This implies
(1 − α)d(xn+1, xn) ≤ αd(xn, xn−1)

or
d(xn+1, xn) ≤

α

1 − α
d(xn, xn−1)

Then let β = α
1−α

. Since α ∈ (0, 1

2
), β ∈ (0, 1), and from the above argument,

d(xn+1, xn) ≤ βd(xn, xn−1) for each n ∈ N. Then for each n ∈ N, repeating yields

d(xn+1, xn) ≤ βd(xn, xn−1)

≤ β2d(xn−1, xn−2)
...

≤ βnd(x1, x0)

Then fix n, m ∈ N with n ≥ m.

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm)

≤ (βn + βn−1 + · · · + βm)d(x1, x0)

=
n∑

k=m

βkd(x1, x0)

<

∞∑

k=m

βkd(x1, x0)

=
βm

1 − β
d(x1, x0)

Then let ε > 0. Since βm

1−β
d(x1, x0) → 0 as m → ∞, choose N such that for all m > N ,

βm

1−β
d(x1, x0) < ε. Then if n, m > N with n ≥ m,

d(xn, xm) ≤
βm

1 − β
d(x1, x0) < ε

Thus {xn} is a Cauchy sequence. Since X is complete, there exists x∗ ∈ X such that
xn → x∗.

Now claim that f(x∗) = x∗. To see this, note that for each n ∈ N,

d(f(xn), f(x∗)) ≤ α (d(xn, f(xn)) + d(x∗, f(x∗)))

= α (d(xn, xn+1) + d(x∗, f(x∗)))

Thus

d(xn+1, f(x∗)) = d(f(xn), f(x∗)) ≤ α (d(xn, xn+1) + d(x∗, f(x∗)))

≤ α (βnd(x1, x0) + d(x∗, f(x∗)))
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Then note that βnd(x1, x0) → 0 as n → ∞, and since xn → x∗ and the metric d is
continuous, d(xn+1, f(x∗)) → d(x∗, f(x∗)). Putting these together with the previous
inequality implies

d(x∗, f(x∗)) ≤ αd(x∗, f(x∗))

Since α ∈ (0, 1

2
), this implies d(x∗, f(x∗)) = 0. Thus x∗ = f(x∗), that is, x∗ is a fixed

point of f .

Finally, to show f has a unique fixed point, suppose y∗ ∈ X and f(y∗) = y∗. Then

d(x∗, y∗) = d(f(x∗), f(y∗)) ≤ α (d(x∗, f(x∗)) + d(y∗, f(y∗))) = 0

Since α > 0, this implies d(x∗, y∗) = 0, thus x∗ = y∗.
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