Economics 204 Summer/Fall 2021
 Final Exam

Answer all of the questions below. Be as complete, correct, and concise as possible. There are 7 questions for a total of 180 points possible; point values for each problem are in parentheses. For questions with subparts, each subpart is worth the same number of points. Use the points as a guide to allocating your time.

1. (15) Let D be an $n \times n$ matrix that is diagonal, so $d_{i j}=0$ for all $i \neq j$, where $d_{i j}$ is the $i j^{t h}$ entry of the matrix D (an $n \times n$ matrix M is diagonal if $m_{i j}=0$ for all $i \neq j$, where $m_{i j}$ denotes the $i j^{t h}$ entry of $\left.M\right)$. Show that for every $k \in \mathbb{N}, D^{k}$ is also a diagonal matrix (where M^{k} denotes the product of k copies of the $n \times n$ matrix M).
(Hint: use induction.)
2. (15) Let (X, d) be a metric space and $f, g: X \rightarrow \mathbb{R}$ be continuous functions. Let $C=\{x \in X: f(x) \geq g(x)\}$. Show that C is a closed set.
3. (30) Let X be a vector space over the field F, and let V be a proper subset of X, so $V \subseteq X$ and $V \neq X$. Suppose V is linearly independent. Show that V is a basis for X if and only if every proper superset of V is linearly dependent, that is, if and only if for every subset $W \subseteq X$ such that $V \subseteq W$ and $V \neq W, W$ is linearly dependent.
4. (30) Let $a, b \in \mathbb{R}$ with $a<b$, and $f:[a, b] \rightarrow \mathbb{R}$. Suppose f is continuous on $[a, b]$ and differentiable on (a, b). Show that if $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$ then f is one-to-one.
5. (30) Let (X, d) be a metric space and $C \subseteq X$ be compact. Let $\left\{x_{n}\right\} \subseteq C$ be a sequence and let A be the set of cluster points of $\left\{x_{n}\right\}$.
a. Show that A is closed and $A \subseteq C$.
b. Show that $A \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ is compact.
(Hint: Use the open cover definition of compactness.)
6. (30) Let $a, b \in \mathbb{R}$ with $a \leq b$. Suppose $\varphi:[a, b] \rightarrow 2^{\mathbb{R}}$ is a continuous correspondence with nonempty, compact, convex values. Thus for every $x \in[a, b], \varphi(x) \subseteq \mathbb{R}$ is nonempty, compact, and convex. Define the function $f:[a, b] \rightarrow \mathbb{R}$ by

$$
f(x)=\frac{1}{2}(\sup \varphi(x)+\inf \varphi(x)) \quad \text { for each } x \in[a, b]
$$

a. Show that $f(x) \in \varphi(x)$ for each $x \in[a, b]$.
b. Show that f is continuous.
7. (30) Let (X, d) be a nonempty complete metric space, and let $f: X \rightarrow X$. Suppose there exists $\alpha \in\left(0, \frac{1}{2}\right)$ such that for all $x, y \in X$,

$$
d(f(x), f(y)) \leq \alpha(d(x, f(x))+d(y, f(y)))
$$

Show that f has a unique fixed point.

