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Lecture 10

Outline

1. Diagonalization of Real Symmetric Matrices

2. Application to Quadratic Forms

3. Linear Maps Between Normed Spaces
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How Might This Matter

• Why does diagonalizability matter?

Consider a two-dimensional linear difference equation:
(

ct+1
kt+1

)

=

(

b11 b12
b21 b22

)(

ct
kt

)

∀t = 0,1,2,3, . . .

given an initial condition c0, k0, or, setting

yt =

(

ct
kt

)

∀t and B =

(

b11 b12
b21 b22

)

we can rewrite this more compactly as

yt+1 = Byt ∀t

where bij ∈ R each i, j.
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We want to find a solution yt, t = 1,2,3, . . . given initial

condition y0. (Why?)

Such a dynamical system will arise for example as a character-

ization of the solution to a standard infinite-horizon optimal

growth problem (202a, lecture 2).

If B is diagonalizable, this can be easily solved after a change

of basis. If B is diagonalizable, choose an invertible 2×2 real

matrix P such that

P−1BP = D =

(

d1 0
0 d2

)

Then

yt+1 = Byt ∀t ⇐⇒ P−1yt+1 = P−1Byt ∀t

⇐⇒ P−1yt+1 = P−1BPP−1yt ∀t

⇐⇒ ȳt+1 = Dȳt ∀t



where ȳt = P−1yt ∀t.

Since D is diagonal, after a change of basis to ȳt, we need to

solve two independent linear univariate difference equations,

which is easy:

ȳit = dt
iȳi0 ∀t

• Not all real n × n matrices are diagonalizable (not even all

invertible n×n matrices are)...so can we identify some classes

that are?

• Some types of matrices appear more frequently than oth-

ers – especially real symmetric n × n matrices (matrix rep-

resentation of second derivatives of C2 functions, quadratic

forms...).



• Recall that an n × n real matrix A is symmetric if aij = aji

for all i, j, where aij is the (i, j)th entry of A.



Orthonormal Bases

Definition 1. Let

δij =

{

1 if i = j
0 if i 6= j

A basis V = {v1, . . . , vn} of Rn is orthonormal if vi · vj = δij.

In other words, a basis is orthonormal if each basis element has

unit length ( ‖vi‖2 = vi · vi = 1 ∀i), and distinct basis elements

are perpendicular (vi · vj = 0 for i 6= j).
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Orthonormal Bases

Remark: Suppose that x =
∑n

j=1 αjvj where {v1, . . . , vn} is an
orthonormal basis of Rn. Then

x · vk =





n
∑

j=1

αjvj



 · vk

=
n
∑

j=1

αj(vj · vk)

=
n
∑

j=1

αjδjk

= αk

so

x =
n
∑

j=1

(x · vj)vj
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Orthonormal Bases

Example: The standard basis of Rn is orthonormal.

(Why?)
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Unitary Matrices

Recall that for a real n × m matrix A, A> denotes the transpose

of A: the (i, j)th entry of A> is the (j, i)th entry of A.

So the ith row of A> is the ith column of A.

Definition 2. A real n × n matrix A is unitary if A> = A−1.

Notice that by definition every unitary matrix is invertible.
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Unitary Matrices

Theorem 1. A real n × n matrix A is unitary if and only if the

columns of A are orthonormal.

Proof. Let vj denote the jth column of A.

A> = A−1 ⇐⇒ A>A = I

⇐⇒ vi · vj = δij ∀i, j

⇐⇒ {v1, . . . , vn} is orthonormal
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Unitary Matrices

If A is unitary, let V be the set of columns of A and W be the

standard basis of Rn. Since A is unitary, it is invertible, so V is

a basis of Rn.

A> = A−1 = MtxV,W (id)

Since V is orthonormal, the transformation between bases W

and V preserves all geometry, including lengths and angles.

9



Diagonalization of Real Symmetric Matrices

Theorem 2. Let T ∈ L(Rn,Rn) and W be the standard ba-

sis of Rn. Suppose that MtxW (T) is symmetric. Then the

eigenvectors of T are all real, and there is an orthonormal basis

V = {v1, . . . , vn} of Rn consisting of eigenvectors of T , so that

MtxW(T) is diagonalizable:

MtxW (T) = MtxW,V (id) · MtxV (T) · MtxV,W (id)

where MtxV T is diagonal and the change of basis matrices

MtxV,W(id) and MtxW,V (id) are unitary.

The proof of the theorem requires a lengthy digression into the

linear algebra of complex vector spaces. A brief outline is in the

notes.
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Quadratic Forms

Example: Let

f(x) = αx2
1 + βx1x2 + γx2

2

Let

A =





α β
2

β
2 γ




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so A is symmetric and

x>Ax = (x1, x2)





α β
2

β
2 γ





(

x1
x2

)

= (x1, x2)





αx1 + β
2x2

β
2x1 + γx2





= αx2
1 + βx1x2 + γx2

2

= f(x)



Quadratic Forms

Consider a quadratic form

f(x1, . . . , xn) =
n
∑

i=1

αiix
2
i +

∑

i<j

βijxixj (1)

Let

αij =







βij
2 if i < j

βji
2 if i > j

Let

A =







α11 · · · α1n
... . . . ...

αn1 · · · αnn






so f(x) = x>Ax
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Quadratic Forms

A is symmetric, so let V = {v1, . . . , vn} be an orthonormal basis

of eigenvectors of A with corresponding eigenvalues λ1, . . . , λn.

Then A = U>DU

where D =











λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn











and U = MtxV,W (id) is unitary

The columns of U> (the rows of U) are the coordinates of

v1, . . . , vn, expressed in terms of the standard basis W . Given

x ∈ Rn, recall

x =
n
∑

i=1

γivi where γi = x · vi
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Quadratic Forms

So

f(x) = f
(

∑

γivi

)

=
(

∑

γivi

)>
A
(

∑

γivi

)

=
(

∑

γivi

)>
U>DU

(

∑

γivi

)

=
(

U
∑

γivi

)>
D
(

U
∑

γivi

)

=
(

∑

γiUvi

)>
D
(

∑

γiUvi

)

= (γ1, . . . , γn)D







γ1
...

γn







=
∑

λiγ
2
i
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Quadratic Forms

The equation for a level set of f is






γ ∈ R
n :

n
∑

i=1

λiγ
2
i = C







• If λi ≥ 0 for all i, the level set is an ellipsoid, with principal

axes in the directions v1, . . . , vn. The length of the principal

axis along vi is
√

C/λi if C ≥ 0 (if λi = 0, the level set is

a degenerate ellipsoid with principal axis of infinite length in

that direction). The level set is empty if C < 0.

• If λi ≤ 0 for all i, the level set is an ellipsoid, with principal

axes in the directions v1, . . . , vn. The length of the principal
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axis along vi is
√

C/λi if C ≤ 0 (if λi = 0, the level set is

a degenerate ellipsoid with principal axis of infinite length in

that direction). The level set is empty if C > 0.

• If λi > 0 for some i and λj < 0 for some j, the level set is

a hyperboloid. For example, suppose n = 2, λ1 > 0, λ2 < 0.

The equation is

C = λ1γ2
1 + λ2γ2

2

=

(

√

λ1γ1 +
√

|λ2|γ2

)(

√

λ1γ1 −
√

|λ2|γ2

)



This is a hyperbola with asymptotes

0 =
√

λ1γ1 +
√

|λ2|γ2

⇒ γ1 = −
√

|λ2|
λ1

γ2

0 =

(

√

λ1γ1 −
√

|λ2|γ2

)

⇒ γ1 =

√

|λ2|
λ1

γ2
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Quadratic Forms

This proves the following corollary of Theorem 2.

Corollary 1. Consider the quadratic form (1).

1. f has a global minimum at 0 if and only if λi ≥ 0 for all i; the

level sets of f are ellipsoids with principal axes aligned with

the orthonormal eigenvectors v1, . . . , vn.

2. f has a global maximum at 0 if and only if λi ≤ 0 for all i;

the level sets of f are ellipsoids with principal axes aligned

with the orthonormal eigenvectors v1, . . . , vn.
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3. If λi < 0 for some i and λj > 0 for some j, then f has a saddle

point at 0; the level sets of f are hyperboloids with principal

axes aligned with the orthonormal eigenvectors v1, . . . , vn.



Bounded Linear Maps

Definition 3. Suppose X, Y are normed vector spaces and

T ∈ L(X,Y ). We say T is bounded if

∃β ∈ R s.t. ‖T(x)‖Y ≤ β‖x‖X ∀x ∈ X

Note this implies that T is Lipschitz with constant β.
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Bounded Linear Maps

Much more is true:

Theorem 3 (Thms. 4.1, 4.3). Let X and Y be normed vector

spaces and T ∈ L(X, Y ). Then

T is continuous at some point x0 ∈ X

⇐⇒ T is continuous at every x ∈ X

⇐⇒ T is uniformly continuous on X

⇐⇒ T is Lipschitz

⇐⇒ T is bounded

Proof. Suppose T is continuous at x0. Fix ε > 0. Then there

exists δ > 0 such that

‖z − x0‖ < δ ⇒ ‖T(z) − T(x0)‖ < ε
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Now suppose x is any element of X. If ‖y − x‖ < δ, let z =

y − x + x0, so ‖z − x0‖ = ‖y − x‖ < δ.

‖T(y) − T(x)‖
= ‖T(y − x)‖
= ‖T(y − x + x0 − x0))‖
= ‖T(z) − T(x0)‖
< ε

which proves that T is continuous at every x, and uniformly

continuous.

We claim that T is bounded if and only if T is continuous at 0.

Suppose T is not bounded. Then

∃{xn} s.t. ‖T(xn)‖ > n‖xn‖ ∀n



Note that xn 6= 0. Let ε = 1. Fix δ > 0 and choose n such that
1
n < δ. Let

x′n =
xn

n‖xn‖

‖x′n‖ =
‖xn‖
n‖xn‖

=
1

n
< δ

‖T(x′n)− T(0)‖ = ‖T(x′n)‖
=

1

n‖xn‖
‖T(xn)‖

>
n‖xn‖
n‖xn‖

= 1

= ε



Since this is true for every δ, T is not continuous at 0. Therefore,

T continuous at 0 implies T is bounded. Now, suppose T is

bounded, so find M such that ‖T(x)‖ ≤ M‖x‖ for every x ∈ X.

Given ε > 0, let δ = ε/M . Then

‖x − 0‖ < δ ⇒ ‖x‖ < δ

⇒ ‖T(x) − T(0)‖ = ‖T(x)‖ < Mδ

⇒ ‖T(x) − T(0)‖ < ε

so T is continuous at 0.

Thus, we have shown that continuity at some point x0 implies

uniform continuity, which implies continuity at every point, which

implies T is continuous at 0, which implies that T is bounded,

which implies that T is continuous at 0, which implies that T is



continuous at some x0, so all of the statements except possibly

the Lipschitz statement are equivalent.

Suppose T is bounded, with constant M . Then

‖T(x) − T(y)‖ = ‖T(x − y)‖
≤ M‖x − y‖

so T is Lipschitz with constant M ; conversely, if T is Lipschitz

with constant M , then T is bounded with constant M . So all

the statements are equivalent.



Bounded Linear Maps

Every linear map on a finite-dimensional normed vector space is

bounded (and thus continuous, uniformly continuous, and Lips-

chitz continuous).

Theorem 4 (Thm. 4.5). Let X and Y be normed vector spaces,

with dimX = n. Every T ∈ L(X, Y ) is bounded.

Proof. See de la Fuente.

21



Topological Isomorphism

Definition 4. A topological isomorphism between normed vector

spaces X and Y is a linear transformation T ∈ L(X,Y ) that is

invertible (one-to-one, onto), continuous, and has a continuous

inverse.

Two normed vector spaces X and Y are topologically isomorphic

if there is a topological isomorphism T : X → Y .
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The Space B(X, Y )

Suppose X and Y are normed vector spaces. We define

B(X, Y ) = {T ∈ L(X, Y ) : T is bounded}

‖T‖B(X,Y ) = sup

{

‖T(x)‖Y

‖x‖X
, x ∈ X,x 6= 0

}

= sup{‖T(x)‖Y : ‖x‖X = 1}

We skip the proofs of the rest of these results – read dlF.
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The Space B(X, Y )

Theorem 5 (Thm. 4.8). Let X, Y be normed vector spaces.

Then
(

B(X, Y ), ‖ · ‖B(X,Y )

)

is a normed vector space.

24



The Space B(Rn, Rm)

Theorem 6 (Thm. 4.9). Let T ∈ L(Rn,Rm) (= B(Rn,Rm))

with matrix A = (aij) with respect to the standard bases. Let

M = max{|aij| : 1 ≤ i ≤ m,1 ≤ j ≤ n}

Then

M ≤ ‖T‖ ≤ M
√

mn

.
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Compositions

Theorem 7 (Thm. 4.10).Let R ∈ L(Rm,Rn) and S ∈ L(Rn,Rp).

Then

‖S ◦ R‖ ≤ ‖S‖‖R‖
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Invertibility

Define Ω(Rn) = {T ∈ L(Rn,Rn) : T is invertible}

Theorem 8 (Thm. 4.11’). Suppose T ∈ L(Rn,Rn) and E is the

standard basis of Rn. Then

T is invertible

⇐⇒ ker T = {0}
⇐⇒ det (MtxE(T)) 6= 0

⇐⇒ det
(

MtxV,V (T)
)

6= 0 for every basis V

⇐⇒ det
(

MtxV,W(T)
)

6= 0 for every pair of bases V, W
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Invertibility

Theorem 9 (Thm. 4.12). If S, T ∈ Ω(Rn), then S ◦ T ∈ Ω(Rn)

and

(S ◦ T)−1 = T−1 ◦ S−1
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Invertibility

Theorem 10 (Thm. 4.14). Let S, T ∈ L(Rn,Rn). If T is invert-

ible and

‖T − S‖ <
1

‖T−1‖
then S is invertible. In particular, Ω(Rn) is open in L(Rn,Rn) =

B(Rn,Rn).

Theorem 11 (Thm. 4.15). The function (·)−1 : Ω(Rn) →
Ω(Rn) that assigns T−1 to each T ∈ Ω(Rn) is continuous.
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