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Derivatives

Definition 1. Let f: I — R, where I C R is an open interval. f
is differentiable at x € I if

@ h) - @)
h—0 h

for some a € R.



O— ’?L(K’)

This is equivalent to da € R such that
f(@+h) = (f(z) +ah) _

lim

h—0 h
& Ve>030>0st 0<|h<d= f(x+h)_}§f(x)+ah) <e
o Ve>036>0s.t. o<|h|<5;»|f(x+h)_|}§|f(x)+ah) <e
- 1im |[fl@+h) — (fe) tah)] _ g

h—0 |h|
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Derivatives

Definition 2. If X C R" is open, f : X — R™ is differentiable at
x € X if AT, € L(R"®, R™) such that

im @+ h) = (f(z) + To(h))|
h—0,heR" [|h|
f is differentiable if it is differentiable at all x € X .

=0 (1)

Note that T, is uniquely determined by Equation (1).

\ T~

ANCURIONESS

The definition requires that one linear operater 7, works no
matter how h approaches zero.

In this case, f(x) + Tx(h) is the best linear approximation to
f(x + h) for sufficiently small h.



Big-Oh and little-oh

Notation:

o y = O(|h|*) as h — 0 — read "y is big-Oh of||h
o<
AK,§ > 0 s.t. [|h||< d =||ly|| < K||h]"

(" — means

\ \ || e youwnded
LLL\LL“ e A

e y =o(|h][') as h — 0 — read "y is little-oh of [|h[*" — means
lim M =0
h=0(|h|f

ll\gl\ > O o< . =>0
TN

Cmesked too (W) = OLnna™D
- Note that y = O(|h|*T1) as h — 0 implies y = o(|h|™) as h — O.
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Using this notation: f is differentiable at z < 3T, € L(R",R™)
such that

Fa+ 1) 3 £@) + Lol g ofh as - o
W )



More Notation

Notation:

e df, is the linear transformation 1.

\(‘Q@f QS,Q_./\%C&./J&"\‘ © I\

e Df(x) is the matrix/of df, with respect to the standard basis.
N

This is called the Jacobian or Jacobian matrix of f at x
o E¢(h) = f(z+h) — (f(z) +dfz(h)) is the error term

Using this notation, \
(
f is differentiable at = < E¢(h) =o(h) as h — 0

A



INER Y

What's Df(x)?
Now compute Df(x) = (a;;). Let {e1,...,en} be the standard
basis of R™. Look in direction e; (note that||ye;|=|v]). ¥, >0 s ¥0

o(y)

A/T C\_\: Uied\

f(z +ve;) - (f(a:) + Tx(ve;)

flz4e;) — | f(z) + (

fl@ 4 vej) — (f(w) + (

—— (O\

’Vafm]

[~

__%Po+



SR > = < = L%\} — 5T vese
Srﬁb‘. RA = - )d’.“

Fori=1,...,m, let f* denote the ith component of the function
fi 00 = (16, o, €70

SR fi(x+vej)—(fi(w)+7az‘j) = o(7)

of?
o, ()

SO a;y

,.F (3“\ = Uy o0 —- \%""“)

< = g )\_W\( = A
50 0N =™ 7 = M



Derivatives and Partial Derivatives

Theorem 1 (Thm. 3.3). Suppose X C R" is open and f : X —
R™ s differentiable at x € X. Then %(a;) exists for 1 <i < m,
J

1 <53<n, and

1 1
=@ - (@)
Co\ @ - Y@ A
i.e. the Jacobian at x is the matrix of partial derivativesét x

A
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Derivatives and Partial Derivatives

Remark: If f is differentiable at z, then all first-order partial

derivatives 8—f exist at x. However, the converse is false: exis-

tence of all the first-order partial derivatives does not imply that
f is differentiable.

The missing piece is continuity of the partial derivatives:

Theorem 2 (Thm. 3.4). If all the first-order partial derivatives

% (1 <i<m, 1< j<n) exist and are continuous at x, then f
J
is differentiable at x.
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Directional Derivatives

Suppose X C R"™ open, f : X — R™ is differentiable at x, and
o X >0 ¢ Uxsll= byl wil = LX)

A% (X0
@+ ) — (F) + ToGu)) = o(y) a5 7 — 0
& f(o 4 9u) — (F@) 4 ATu(u)) = o(y) as v — 0
o TG < @) e

=T
fy_>0 7 / = CL‘E}:. L"-"-\
i erivative in the direction v (with|ju)l= 1) is

lu[=1. we RT yu — ©

(-—\_ (VPP Y- W )

=

i.e. the dire

Df(x)u e R™
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Chain Rule

Theorem 3 (Thm. 3.5, Chain Rule). Let X C R", Y C R™ be
open, f: X —-Y,qg:Y —-RP. Letzge X and F =gqgo f. If f is
differentiable at xqg and g is differentiable at f(xg), then FF = go f
Is differentiable at o and

dFuo = dgy(sq) © dfo
(composition of linear transformations)
DF(zg) = Dg(f(z0))Df(z0)
(matrix multiplication)

Remark: The statement is exactly the same as in the univari-
ate case, except we replace the univariate derivative by a linear
transformation. The proof is more or less the same, with a bit
of linear algebra added.
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Mean Value Theorem

Theorem 4 (Thm. 1.7, Mean Value Theorem, Univariate Case).
ac>l et abe R. Suppose f : [a,b] — R is continuous on [a,b] and
differentiable on (a,b). Then there exists c € (a,b) such that

f(b) — f(a)
b—a

= f'(c)
that is, such that

f(b) — fla) = f'(c)(b— a)

Proof. Consider the function 4= La.=3 = e
b) —
o) = f(@) — f(a) - IO IO o

oove alay = gllyy=0., 12



Then g(a) =0 = g(b). Note that for =z € (a,b),

/(@) = ['(a) - LI

so it suffices to find ¢ € (a,b) such that ¢’(¢) = 0.

Case I: If g(x) = O for all z € [a,b], choose an arbitrary c € (a,b),
and note that ¢'(c) = 0, so we are done.

Case II: Suppose g(x) > 0 for some z € [a,b]. Since g is contin-
uous on |[a,b], it attains its maximum at some point ¢ € (a,b).
Since g is differentiable at ¢ and c¢ is an interior point of the
domain of g, we have ¢’(c¢) = 0, and we are done.

Case III: If g(xz) < O for some z € [a,b], the argument is similar
to that in Case II. [ ]



f(b)

f(a)

f(x)

£ -4

- G

flay ~

g(x)

L) - Sy —

.b g
o— =
13

(x-a)



Mean Value Theorem

Y
Notation: /

l(x,y) ={arx+ (1 —a)y:a€[0,1]} i

is the line segment from = to y. w4 ¢ @

Theorem 5 (Mean Value Theorem). Suppose f : R* — R is
differentiable on an open set X C R", z,y € X and ¢(x,y) C X.
Then there exists z € ¢(x,y) such that

fy) — f(z) = Df(2)(y — )
= d-rv% (Y~ >
Cons<der —S; RN \\-x —= \ %‘\\,tr\ \3\_3

14
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Notice that the statement is exactly the same as in the univariate
case. For f: R" — R™, we can apply the Mean Value Theorem
to each component, to obtain z1,..., zm € £(x,y) such that

') — fi(z) = Df'(z)(y — z)
However, we cannotﬁfind a single z which works for every com-
ponent. oS

Note that each z; € 4(xz,y) C R"™; there are m of them, one for
each component in the range.
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Mean Value Theorem

Theorem 6. Suppose X C R"™ is open and f : X — R™ s differ-
entiable. If x,y € X and ¢(xz,y) C X, then there exists z € ¢(x,vy)
such that

1f() — F@)| < [ldfz(y—2)]) = WDk ln-2\

ldfz[lly — |l

K £ WOFEW Wy=x\

s oA ‘/’/

L;f\&o-f bearxs‘(n:””@_}abﬁs

IA A

oo S:f;c_’s-caﬂ)
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Mean Value Theorem

Remark: To understand why we don’'t get equality, consider
f:[0,1] — R? defined by
f(t) = (cos2nt,sin2xt)
f maps [0, 1] to the unit circle in R2. Note that f(0) = f(1) =
(1,0), so |f(1) — f(0)| = 0. However, for any z € [0, 1],
|df.(1 —0)] = |27(—sin2wz,Ccos2nz)|
277\/sin2 27z + COS? 272

Se Flan- £y A ofe) s G- 3z e o)
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Taylor's Theorem — R

Theorem 7 (Thm. 1.9, Taylor's Theorem in R). Let f : I — R
be n-times differentiable, where I C R is an open interval. If
x,x+ h €I, then

B (2
f(w+h>—f(>+zf ;!)h + By

where f(k) js the k" derivative of f and

(n) n
E, = / (x + AM)h for some X € (0,1)

1 A esAers CNr /S Ay S

! JQMCL/‘KM 18




Motivation: Let

To(h) =

n_ f(k) k
@+ ! éf)h W o der gotyaamioh b
k=1 '
4 2 (n) n
= @)+ fn+ T TR

T7(0)
T/ (h) =
T/(0) =
T/(h) =

T/(0) =

(M (0) =

= f(=z)

f(n)(x)hn—ﬂ_

() + f"()h+ -+

(n—1)!
f'(x) o
" ) (g)pn—2
P+ O
()
f(n)(x)
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so Ty (h) is the unique nt" degree polynomial such that

f(x)
f'(x)

T (0)
T,,(0)

$(©0) = ()
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Taylor's Theorem — R

Theorem 8 (Alternate Taylor's Theorem in R). Let f: I — R
be n times differentiable, where I C R is an open interval and
x e l. Then

n_ (k) (2)LE
fa+n) =@+ Y Tk
k=1 '

+o(h™) ash — 0

If f is (n+4+ 1) times continuously differentiable, then

n_ (k) (2)HE
fa+n = @)+ 3 Lo
k=1 '

—|—O<h”+1) as h — 0

Remark: The first equation in the statement of the theorem is
essentially a restatement of the definition of the nt" derivative.
The second statement is proven from Theorem 1.9, and the
continuity of the derivative.
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C* Functions

Definition 3. Let X C R™ be open. A function f : X — R™ s
continuously differentiable on X if

i, =
e f is differentiable on X and ¥

- A "

A9ty > LR ®)

e df; is a continuous function of x from X to L(R"™,R™), with
respect to the operator norm ||dfz]||

fis Ck if all partial derivatives of order < k exist and are contin-
uous in X.

21



C* Functions

Theorem 9 (Thm. 4.3). Suppose X C R"™ is open and f: X —
R'™. Then f is continuously differentiable on X if and only if f
is 1.
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Taylor's Theorem — Linear Terms

Theorem 10. Suppose X CR" isopenandx e X. If f: X — R™
is differentiable, then df G\

L

F(@+h) = £(2) + Df(@)h + olh) as h— 0

o
M~

This is essentially a restatement of the definition of differentia-
bility.

23



Taylor's Theorem — Linear Terms

Theorem 11 (Corollary of 4.4). Suppose X C R" is open and
reX. IfFf: X —R™ s C?, then

f(x 4+ h) = f(z) + Df(z)h + O <|h|2) as h — 0

24



Tavlor's Theorem — Quadratic Terms

We treat each component of the function separately, so consider
f: X —-R, X CR"™an open set. Let

a2f o2 f o2 f
( 85’71 85628561(x) 8xn8x1( )\
o2 f 02 f
sz(x) — 8:618:62( ) 83;2 (x) o 8xn8x2 (x)
82f : :
o2 f 02 f
cC? = =
= D?f(z) is symmetric
= sz(ac) has eigenvectors that are an orthonormal basis

and thus can be diagonalized

25



Tavlor's Theorem — Quadratic Terms

Theorem 12 (Stronger Version of Thm. 4.4). Let X C R" be
open, f: X - R, feC?X), and z € X. Then

f(x+h) = f(z) + Df(x)h + %hT(DQf(a;))h +o0 (|h|2) as h — 0
If f € C3,

f(x+h) = f(z) + Df(z)h + %hT(DQf(a;))h + 0 (|h|3) as h — 0
O i S

w A

26
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Characterizing Critical Points

Definition 4. We say f has a saddle at x if Df(x) = 0 but f has
neither a local maximum nor a local minimum at x.

5\- \~o—S o CoodA cs}-\. &QQ«:\T ooX e \-Sr Q&' L”"‘*B = O |
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Characterizing Critical Points

Corollary 1. Suppose X CR" isopenandxz e X. If f : X - R is
C?, there is an orthonormal basis {v1,...,vn} and corresponding
eigenvalues \1,..., ., € R of D2f(z) such that

flx+h) = f(x -|—’71U1 + -+ Yoon) = D XN
= f(z)+ Z (Df(@)vi) vi+ 5 Z Aiv? -|—0<|7| )

1 =1 Y
0
where v = h - (O S R M"L‘ﬁ)\.\ ~ \m (}Q—Lx.\\,\ “+ Dt\k\,\\\ B

1. If f € C3, we may strengthen o <|7|2) to O <|7|3).
2. If f has a local maximum or local minimum at x, then

Df(x) =0

28



3. If Df(x) = 0, then
® \,....\n>0= f has a local minimum at x
e \,...,.\n< 0= f has a local maximum at x

e \; <0 for somei, A\; > 0 for some j = f has a saddle at

T

e \,...,.\n >0, \; >0 for some 1 = f has a local minimum
or a saddle at x

e \,...,.\n <0, \; <O for some 1= f has a local maximum
or a saddle at x

e \{ = .- = X\p =0 gives no information.



Proof. (Sketch) From our study of quadratic forms, we know
the behavior of the quadratic terms is determined by the signs
of the eigenvalues. If \;, = 0 for some ¢, then we know that
the quadratic form arising from the second partial derivatives is
identically zero in the direction v;, and the higher derivatives will
determine the behavior of the function f in the direction v;. For
example, if f(z) = 23, then f/(0) = 0, f”(0) = 0, but we know
that f has a saddle at © = 0; however, if f(z) = z*, then again
f'(0) = 0 and f”(0) = 0 but f has a local (and global) minimum
at £ = 0. [ ]



