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Cardinality (cont.) e
Algebraic Structures: Fields and Vector Spaces
Axioms for R

Sup, Inf, and the Supremum Property

. Intermediate Value T heorem



Cardinality

A set is either finite or infinite. A set is finite if it is numerically
equivalent to {1,...,n} for some n. A set that is not finite is
infinite. Ne L\B

In particular, A = {2,4,6,...,50} is finite, B = {1,4,9,16,25,36,49...

is infinite.

A set is countable if it is numerically equivalent to the set of
natural numbers N = {1,2,3,...}. An infinite set that is not
countable is called uncountable.
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Cardinality

Example: The set of integers Z is countable.
Z=1{0,1,-1,2,—2 ...}
Define f : N — Z by

) =

@) = 1

3 = -1
“3}\99(“ _ n |
3 ) = (0" |2

where |x]| is the greatest integer less than or equal to z. It is
straightforward to verify that f is one-to-one and onto.
24



Cardinality

Theorem 5. The set of rational numbers Q is countable.

“Picture Proof’”:
Q = {T:m,nez,n#o}

{—:mEZ,nEN}
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Go back and forth on upward-sloping diagonals, omitting the



repeats:

f(1) =0
f(2) = i
f(3) = 5
f(4) = -

f:N—Q, f is one-to-one and onto.
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Cardlnallty (cont )

Notation: Given a set A, 24 is the set of all subsets of A. This
is the “power set” of A, also denoted P(A).

Important example of an uncountable set:

Theorem 1 (Cantor). 2N, the set of all subsets of N, is not
countable.

Proof. Suppose 2N is countable. Then there is a bijection f :
N — 2N Let A, = f(m). We create an infinite matrix, whose

W\ﬁ‘:m




(m,n)t" entry is 1 if n € Ay, O otherwise:

1 2 3 4 5 _
.. Len=4 = 0
K> = Ay = {1}
2N A = {1,2,3)
Ay = N
As = 2N

Now, on the main diagonal, change all the Os to and vice

Y



VErsa.

A = {1}

2N A3 = {1,2,3}
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{ 1 |f n & Am k:p\,d\,.\ C_Q_Act::r' —(;-\»mc_}v\\!b'\
tmn =

meA &

&
1le A &
2€eA &

me A

)

tmm = 0
m & Am
1¢Z A1 so A+ Ay
2¢& A> SO A # As

m¢ Am SO A# Ay Nwe W

Therefore, A #= f(m) for any m, so f is not onto, contradiction.
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Some Additional Facts About Cardinality

Recall we let |A| denote the cardinality of a set A.

e if A is numerically equivalent to {1,...,n} for some n € N,
then |A| = n.
e A and B are numerically equivalent if and only if |A| = |B|

e if |[A| =n and A is a proper subset of B (that is, A C B and
A # B) then |A| < |B|



if A is countable and B is uncountable, then

n < |A| <|B|] YneN

it AC B then |A| < |B|

ifr: A— Bis 1-1, then |A| < |B|

if B is countable and A C B, then A is at most countable,
that is, A is either empty, finite, or countable

ifr: A— B is 1-1 and B is countable, then A is at most
countable
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Algebraic Structures: Fields

Definition 1. A field 7 = (F, 4+, ) is a 3-tuple consisting of a set

F' and two binary operations +,- . F' X F' — Fl such that
\ .

1. Associativity of +:
Va,B,vy€ F, (a+8)+v=a+ (B+ )

2. Commutativity of +:
Va,B € F, a+8=08+«

3. EXxisternce of additive identity:

NI |
“Wmiq_« “~ 310 F s.t. \V/(XEF,O(—FO:O—l—Q{:Oé
. 4



. Existence of additive inverse:

Vo e F A (—a) e Fs.t. at+(—a)=(—a)+a=0
Define o — 8 = a+ (—03)

. Associativity of - :

\V/O{,ﬁ,’}/EF, (aﬁ)vza(ﬁv)

. Commutativity of - :

\V/O{,ﬁEF, &'5:5°O{

. Existence of multiplicative identity:

N1eFst 1#0andvVa€eF, a-1=1-a=aqa



8. Existence of multiplicative inverse:

Va € F' s.t. oz#OEI!oz_léFS.t. a-al=al.a=1
Define g =apf~t.  (px o)

9. Distributivity of multiplication over addition:

\V/O{,ﬁ,’}/EF, a(5+7):a5—|—a7

" L\
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Fields

Examples:
o R S‘\(Mc&ar& + , ©
-
'@:{w-l-iyix,yeR}. 7}2:—1, SO ( skardard + , )

(z+iy)(w+iz) = zwizz4iwy+i‘yz = (zw—yz)+i(zz+wy)

SJ(G_,Wé}-Ou*rA e
e Q: QCR, Q#R. Qisclosed under 4, -, taking additive and

multiplicative inverses; the field axioms are inherited from the
field axioms on R, so Q is a field.



-, e S’krcp/\c&&fd\ oA T’P\

e N is not a field: no additive identity. O S e L
WA ¢

e skandord W R
e Z is not a field; no multiplicative inverse for 2.

e Q(v/2), the smallest field containing QU {+/2}. Take Q, add
V2, and close up under 4, -, taking additive and multiplica-
tive inverses. One can show

Q(V2)={q+rV2:qreQ}

For example,

<q—|—’r\/§)_1 = 1 4 V2

q2 — 272 B q2 — 22




o A finite field: F, = ({0,1},+,-) where we Seiine

O+0 = O 0-0 = O
0O4+1 =140 =1 01 = 1-0=0

( “Arithmetic mod 2")
=) \=7)
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Vector Spaces /

Definition 2. A vector space is a 4-tuple (V,F,+,-) where V
iIs a set of elements, called vectors, F' is a field, + is a binary
operation on V called vector addition, and - : FxV — V s called
scalar multiplication, satisfying

1. Associativity of +:
Vr,y,z€V, (x+y)+z2=x+ (y+ 2)

2. Commutativity of +:

Ve,yeV, x+y=y—+=x



. Existence of vector additive identity:

J0eV st. VeeV, t4+0=04+x==x

. Existence of vector additive inverse:

Vee VI(—-x)eV st 24+ (—x)=(—x)+x2=0
Define x —y to be xz + (—vy).

. Distributivity of scalar multiplication over vector addition:

Vaoe F,e,yeV, a-(t4+y)=a-z4+a-y

. Distributivity of scalar multiplication over scalar addition:

Va,6 e F,e eV (a+0) z=a-2+ 06 -x



/7. Associativity of - :

Va,0e F,e eV (a-8)-z=a-(B-x)

8. Multiplicative identity:

VeeV 1l-xz==z
( Note that 1 is the multiplicative identity in F; 1 ¢ V)
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Vector Spaces

Examples:
1. R" over R.

2. R is a vector space over Q:

(scalar multiplication) g -r = ¢gr (product in R)

R is not finite-dimensional over Q, i.e. R is not Q" for any
n € N.

3. R is a vector space over R.



4. Q(v/2) is a vector space over Q. As a vector space, it is QQ;
as a field, you need to take the funny field multiplication.
U-.e. ¢ C% N\ Norsws %+ R

5. Q(7/2), as a vector space over Q, is Q3.
SV EGNTS e

6. (F»)™ is a finite vector space over F».

\J =
7. C([0,1]), the space of all continuous real-valued functions on
[0, 1], is a vector space over R.

e vector addition: ¥, € C (Ton3D
(f+9)(t) = F(t) +g(¢) ~relen



Note we define the function f+4g by specifying what value
it takes for each t € [0, 1].

e scalar multiplication: e & fe C(Ls 2D

(af)(®) = a(f(t))  ~N-els)

e vector additive identity: O is the function which is identi-
cally zero: 0(t) = 0 for all t € [0, 1].

e vector additive inverse:

(=@ ==(f))  re Lo



Axioms for R

. R is a field with the usual operations +, -, additive identity

0, and multiplicative identity 1.

. Order Axiom: There is a complete ordering <, i.e. < is

reflexive, transitive, antisymmetric (a < 3,8 < a = a = B)<O
with the property that ( ordec )

Vo, 3 € R either a < B or B < « (oom pleie)

The order is compatible with 4+ and -, i.e.

a<B = aty<B+n
va’ﬁ’WER{aéﬁ,Oév = ay < fy

a> B means < a. a< B means a< g and a #+ S.



Completeness Axiom

3. Completeness Axiom: Suppose L,H C R, L # 0 # H
satisfy

¢ <h YelL heH
Then
JoeRst. <a<h WelL heH

L (f H
____) . (____

The Completeness Axiom differentiates R from Q: Q satisfies
all the axioms for R except the Completeness Axiom.



Sups, Infs, and the Supremum Property

c R
Definition 3. Suppose X C R. We say ucis an upper bound for
X if
r<uVeelX

AL
and ¢ is a lower bound for X if

< xVrelX

X is bounded above if there is an upper bound for X, and
bounded below if there is a lower bound for X.

10



¢ &
Definition 4. Suppose X is bounded above. The supremum of
X, written sup X, is the least upper bound for X, i.e. supXe@-
satisfies

supX >x Vx e X (supX is an upper bound)

Vy <supX dx € X s.t. x >y (there is no smaller upper bound)

Analogously, suppose X is bounded below. The infimum of X,
written inf X, is the greatest lower bound for X, i.e. inf X satis-

fies eI
infX <ax Vxe X (infX is a lower bound)

Vy >infX Jdx € X s.t. x <y (there is no greater lower bound)

If X is not bounded above, write sup X = co. If X is not bounded
below, write inf X = —oco. Convention: sup® = —oo, inf) = +oo.
11



The Supremum Property

The Supremum Property: Every nonempty set of real numbers
that is bounded above has a supremum, which is a real number.

Every nonempty set of real numbers that is bounded below has
an infimum, which is a real number.

Note: sup X need not be an element of X. For example,
sup(0,1) =1 ¢ (0,1).

12



The Supremum Property

Theorem 2 (Theorem 6.8, plus ...). The Supremum Property
and the Completeness Axiom are equivalent.

Proof. Assume the Completeness Axiom. Let X C R be a
nonempty set that is bounded above. Let U be the set of all
upper bounds for X. Since X is bounded above, U = (. If x € X
and v € U, x <wu since v is an upper bound for X. So

r<uVreX,ueU

By the Completeness Axiom,

dJxeRst. z<a<u Vee X,ueU

a 1S an upper bound for X, and it is less than or equal to every
other upper bound for X, so it is the least upper bound for X,
13



so supX = «a € R. The case in which X is bounded below is
similar. Thus, the Supremum Property holds.

Conversely, assume the Supremum Property. Suppose L, H C R,

L #0%# H, and
¢<hVleLhecH

Since L # () and L is bounded above (by any element of H),
a = sup L exists and is real. By the definition of supremum, « is
an upper bound for L, so

¢t < aVleL

Suppose h € H. Then h is an upper bound for L, so by the
definition of supremum, o« < h. Therefore, we have shown that

t<a< hVie LLhe H
so the Completeness Axiom holds. [ ]



Archimedean Property

Theorem 3 (Archimedean Property, Theorem 6.10 + ...).

Ve,y € R,y >0 3dn € N s.t. ny = w > x
n times

Proof. Exercise. This is a nice exercise in proof by contradiction,
using the Supremum Property. [ ]

14



Intermediate VValue Theorem =
C\

Theorem 4 (Intermediate Value Theorem). Suppose f : [a,b] —
R is continuous, and f(a) < d < f(b). Then there exists c € (a,b)
such that f(c) = d.

Proof. Later, we will give a slick proof. Here, we give a bare-
hands proof using the Supremum Property. Let

B ={x € [a,b] : f(x) < d}

a € B, so B#0; BC [a,b], so B is bounded above. By the
Supremum Property, sup B exists and is real so let ¢ = sup B.
Sincea€ B, ¢c>a. BC [a,b], so c<b. Therefore, c € [a,b].

15



f(b)

fa)




We claim that f(c¢) = d. If not, suppose f(c) < d. Then since
f) >d, c#b soc<b Lete=390 > 0 since fis
continuous at ¢, there exists 6 > 0 such that

Tz —c|<d = |f(z) - flc)] < ¢
= f(x) < f(c) +¢

f(e) + &4
f(e)+d

= d
so (¢c,c+ ) C B, so ¢ # sup B, contradiction.




f(b)

f(c) [

fa)

. C-S c U b

N
fLlned = 3 $> sk o we (-5 &) F6d4a



Suppose f(c¢) > d. Then since f(a) < d, a = ¢, SO ¢ > a. Let
g = f(CT)_d > 0. Since f is continuous at ¢, there exists 6 > 0O
such that

z—cl <8 = [f(@) - f)] < <
= f@ > fo)-e
= f() - [
— [(e)+d
= d

so (c—d6,c+d6)NB = (. So either there exists x € B with x > c+§
(in which case c is not an upper bound for B) or ¢— 4§ is an upper
bound for B (in which case ¢ is not the least upper bound for
B); in either case, ¢ # sup B, contradiction.



Fley=> A 2 1S>0 s~ T o> >y e (=% cx8)

f(b)

f(c)

fa)

2

a c-§ © L b
= N

Ceos, D Al = = daoer 3ne Las an®
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Since f(c) £ d, f(c) # d, and the order is complete, f(c) = d.
Since f(a) <d and f(b) >d, a7#=c#* b, so c € (a,b). [ ]



Corollary 1. There exists x € R such that z? =

Proof. Let f(x) = z2, for z € [0,2]. f is continuous (Why?).
f(0) =0< 2 and f(2) = 4 > 2, so by the Intermediate Value
Theorem, there exists ¢ € (0,2) such that f(c¢) = 2, i.e. such
that ¢ = 2. []
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