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Lim Sups and Lim Infs

Consider a sequence {zp} of real numbers. Let

an = sup{xr:k>n}
= SUD{Q?n, Tp415Tp42; - - }

Bn = inf{zy : k>n}
— inf{xnaxn—l-l?xn—l—Qa---}

N~

Either an = 400 for all n, or an € R and a1 > ap > az > ---
i~

PRI
Either 8y, = —oo for all n, or Bp € R and 81 < By < B3 < ---
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Lim Sups and Lim Infs

Definition 9.
. . +oc0  Iif ay, = +00 for all n
Ilfrrp—>solép tn = { lima,, otherwise.
L . —oo  If B, = —oo for all n
iminten = { lim 8, otherwise.

Theorem 7. Let {z,,} be a sequence of real numbers. Then

liMmp—ooxn =7 € RU{—00,00}
&S limsup, oo Tn = liMinfp,—ooxn = 7
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Increasing and Decreasing Subsequences

Theorem 8 (Theorem 3.2, Rising Sun Lemma). Every sequence

of real numbers contains an increasing subsequence or a decreas-
ing subsequence or both.
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Proof. Let

S={seN:xzs>xn Vn> s}

Either S is infinite, or S is finite. (v exrern)

If S is infinite, let

ni
n2

n3

NE41

min S
min (S\ {n1})
min (S'\ {n1,n2})

min (S\ {n1,no0,...,n%})



Thenny <npo <ng<---.

Tny > Tn, SiNCe€ni €S and no > ng
Tn, > Tpng  SiNCe€ mp € .S and n3 > nop

Tny, > Tnyy,  SINCe€ mp € S and ngyq > nyg

so {zn,} is a strictly decreasing subsequence of {zn}.

If S is finite and nonempty, let ny = (maxS) + 1; if S =0, let
n1 = 1. Then

ny €S so dno >njy S.t. Tn, > Tng
no € S so dnz > np S.t. xpg > Tn,

ng €S SO dngpiq1>ng st xn, > T,



so {xn,} is a (weakly) increasing subsequence of {zy}.

L]



Bolzano-Weierstrass T heorem

Theorem 9 (Thm. 3.3, Bolzano-Weierstrass). Every bounded
sequence of real numbers contains a convergent subsequence.

Proof. Let {z,} be a bounded sequence of real numbers. By the
Rising Sun Lemma, find an increasing or decreasing subsequence
{zn,}. If {zn,} is increasing, then by Theorem 3.1’,

lim xp, = sup{zn, : k€ N} <sup{znp:nc N} < oo

since the sequence is bounded; since the limit is finite, the sub-
sequence converges. Similarly, if the subsequence is decreasing,
it converges. [ ]
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Open and Closed Sets

Definition 1. Let (X,d) be a metric space. A set A C X is open
if

Ve A de>0s.t. Be(x) CA
A set C C X is closed if X \ C is open.






Open and Closed Sets
(=, +v=)

Example: (a,b) is open in the metric space E! (R with the usual

Euclidean metric). Given x € (a,b), a< x <b. Let
———

e=min{r —a,b—x} >0 . x
Then T e
e < bL-x

y€ Be(x) = ye(x—e,x+¢)
C (z—(x—a),x+(b—2x))

= (a,b)
so B:(xz) C (a,b), so (a,bdb) is open.
Notice that ¢ depends on x; in particular, € gets smaller as «
nears the boundary of the set.
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Open and Closed Sets

Example: In E!, [a,b] is closed. R\ [a,b] = (—o00,a) U (b,0) is a

union of two open sets, which must be open.
o Prandord wmekno

Example: In the metric space X = [0,1],/[0,1] is open. With
[0, 1] as the underlying metric space,
celo\) L Bs(0)={x€[0,1] : |z — 0] <e} =10,¢) c Co, )
x & X

Thus, openness and closedness depend on the underlying metric
space as well as on the set.



Open and Closed Sets

Example: Most sets are neither open nor closed. For example,

in EL, [0,1]U (2,3) is neither open nor closed. oy

-/

b
> V. & 3

Example: An open set may consist of a single point. For ex-
ample, if X =N and d(m,n) = |m — n|, then

By p(1) = {meN:|m— 1| <1/2} = {1}

Since 1 is the only element of the set {1} and By ,5(1) = {1} C
{1}, the set {1} is open.



Open and Closed Sets

Example: In any metric space (X,d) both ) and X are open,
and both @ and X are closed.

To see that 0 is open, note that the statement

Vz € 0 3e > 0 Be(z) C 0

is vacuously true since there aren't any z € ). To see that X is
open, note that since B:(x) is by definition {z € X : d(z,z) < €},
it is trivially contained in X.

Since @ is open, X is closed; since X is open, 0 is closed.

x L
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Open and Closed Sets

Example: Open balls are open sets.

Fix we X, ¢>0. R0 s open

Suppose y € Be(x). Then d(x,y) <e. Let § = e —d(x,y) > 0. If
d(z,y) <9, then

emey A £ dGy) +d.a) // Ve /
<) 6+ d(z,y) / /
= cden @y // / /
- N
so Bs(y) C Be(x), so B:(x) is open. / _

Ei(»a) N



Open and Closed Sets
Theorem 1 (Thm. 4.2). Let (X,d) be a metric space. Then

1.  and X are both open, and both closed.

2. The union of an arbitrary (finite, countable, or uncountable)
collection of open sets is open.

3. The intersection of a finite collection of open sets is open.

Proof. 1. We have already shown this.



. Suppose {A)},ren is a collection of open sets.

ze |J Ay = IENSL z€A), = o=
AEN
= Je>0s.t. Be(z) C Ay, C [J Ay
AEN

SO UyepA) is open.

. Suppose Aj,...,Ap € X are open sets. If z € NI, A;, then

x € A1, x € Ap,...,x € Ap,
S
oo oF™ ofen
Je1 > 0,...,en >0 s.t. Be;(z) CAq,...,Bg,(x) C An

SO



Let*

e =min{eq,...,en} >0

Then
Be(x) € Bey(z) € Az,..., Be(x) C Be,(x) C Ap

SO
n

Be(z) C ﬂ A;
i=1
which proves that N'_; A; is open.

L]

*Note this is where we need the fact that we are taking a finite intersection.
The infimum of an infinite set of positive numbers could be zero. And the
intersection of an infinite collection of open sets need not be open.
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Interior, Closure, Exterior and Boundary

Definition 2. e The interior of A, denoted int A, is the largest
open set contained in A (the union of all open sets contained
in A).
e T he closure of A, denoted A, is the smallest closed set con-

taining A (the intersection of all closed sets containing A)
A st desed & A & A

e T he exterior of A, denoted ext A, is the largest open set

contained in X \ A. .

e The boundary of A, denoted 9A = (X \A)N A
k: ‘hz\ N UK ) 10
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Interior, Closure, Exterior and Boundary

WL Wi <dom dord  werrlic -
Example: Let A=1[0,1]U(2,3). Then

intA = (D’ WV LQ‘\. 3\
A = (o) v Lar)
extA = int(X\A)

— (—ee ) U ([ 3) o (3~
0A = (X\A)NA
(== ey 0 B3y 0 L3 4 ) O
= Lora 2y (T = TR
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Sequences and Closed Sets

Theorem 2 (Thm. 4.13). A set A in a metric space (X,d) is
closed if and only if

{zn} CAjzp mz€X =€ A

Proof. Suppose A is closed. Then X \ A is open. Consider a
convergent sequence x, — x € X, with x, € A for alln. If x € A,
x € X\ A, so there is some € > 0 such that Bs(z) C X\ A (why?).
Since xz, — x, there exists N(e¢) such that

n> N(e) = xp € Be(z)
= xpn € A

12



contradiction. Therefore,

{zn} C Az w2z € X =2 €A






. Conversely, suppose

{zn} CAjzp mz€X =€ A

We need to show that A is closed, i.e. X \ A is open. Suppose
not, so X \ A is not open. Then there exists ¢ € X \ A such that

for every € > 0O,

Be(x) Z X \ A
so there exists y € B:(x) such that y € X\ A. Then y € A, hence

Be(z) (VA #D N e>0






Construct a sequence {z,} as follows: for each n, choose

xn € Bi(x)NA

Given ¢ > 0, we can find N(eg) such that N(g) > % by the

Archimedean Property. So n > N(g) = % < ﬁe) < € and

zn € Bi(x) € Be(x). Thus z, — z. Then {x,} C A, z, — =,

SO «x enA, contradiction. Therefore, X \ A is open, so A is
—_—— — —

closed. ]




Continuity in Metric Spaces

Definition 3. Let (X,d) and (Y, p) be metric spaces. A function
f X — Y is continuous at a point xg € X if

Ve >0 35(/1‘/0/,/6/) >0 s.t. d(z,z0) < (5(;’0: &) = p(f(2), f(zg)) <

/ /

f is continuous if it is continuous at every element of its domain.

Note that é can depend on xg and e.

13



Continuity in Metric Spaces

Continuity at zg requires:
e f(xzg) is defined; and

e cither

— zg is an isolated point of X, i.e. 3e > 0 s.t. B:(zq) = {z¢};
or

— limg .z, f(x) exists and equals f(xg)

14



Continuity in Metric Spaces

Suppose f: X —Y and ACY. Define
FHA) ={zeX: f(z) € A}

Theorem 3 (Theorem 6.14). Let (X,d) and (Y,p) be metric
spaces, and f : X — Y. Then f is continuous if and only if

f_l(A) is open in X YVACY s.t. AisopeninyY

Alternatively, f is continuous <= f_l(C) is closed in X for
every closed C C Y.

15



=, Proof. Suppose f is continuous. Given A CY, A open, we must
show that f~1(A) is open in X. Suppose zg € f1(A). Let
yo = f(xg) € A. Since A is open, we can find € > 0 such that
B:(yg) C A. Since f is continuous, there exists § > 0 such that

ve Byt & d(z,mo) <8 = p(f(x), f(z0)) < e
— f(2) € B(yo) < A
= f(x)e A
= acEf_l(A)

so Bs(zg) C f~1(A), so f~1(A) is open.

16



f e D’\:—"('\? AuuS

o

%3 ‘\J )(G. Bé(XO)
R o s RTINS B (F LN SN

= ye {A)

Bs(yo)



<=

- Conversely, suppose

f_l(A) isopen in X VACY s.t. AisopeninY

We need to show that f is continuous. Let zg € X, € > 0. Let
A = B:(f(zg)). A is an open ball, hence an open set, so f~1(A4)
is open in X. xg € f~1(A), so there exists § > 0 such that

Bs(xg) C f71(A).

d(x,z9) <6 =
—
—
—

x € Bs(xg)

z € fH(A)

f(z) € A(= Be(f(z0)))
p(f(), F(20)) < =




o€ F1(B; (f(x)) _

= A850 s, Byx) c %'*LB&GL‘@]

v:)\ = BE(yO)
© =N



Thus, we have shown that f is continuous at zg; since xg is an
arbitrary point in X, f is continuous. [ ]



Continuity in Metric Spaces

The composition of continuous functions is continuous:

Theorem 4 (Slightly weaker version of Thm. 6.10). Let (X,dx),
(Y,dy) and (Z,dy) be metric spaces. If f : X - Y andg:Y — Z
are continuous, then go f : X — Z is continuous.

Proof. Suppose A C Z is open. Since g is continuous, ¢~ 1(A) is

open in Y since f is continuous, f~1(¢g~1(A4)) is open in X.
Toen

We claim that

7 g A) = (go HTHA)

17



Observe

refHgHA) & f@)eg (A

& g(f(@)) e A
& (gofl)(z)ec A
& ze(gof)H(A)

which establishes the claim. This shows that (gof)~1(A) is open

in X, so go f is continuous.

L]



Uniform Continuity

Definition 4 (Uniform Continuity). Let (X,d) and (Y, p) be met-
ric spaces. A function f : X — Y is uniformly continuous if

Ve > 036(c) > 0 s.t. Vg € X, d(x,z0) < 6(e) = p(f(x), f(xg)) < €

Notice the important contrast with continuity: f is continuous
means

Vg € X,e > 0 36(xg,e) > 0 s.t. d(x,xg) < 0(xg,e) = p(f(x), f(xg)) < €
J\

18



Uniform Continuity

Example: Consider f: (0,1] — R given by

fo) =21 ze(0.1]

xr
f is continuous (why?). We will show that f is not uniformly
continuous.

19



Let eg = 1. Take any ¢ > 0 with 6 < 1. Setx:%andy:‘s So

6.
o)
—yl=—=<9
[z — ¥ c
But
|z — y 6/6
f(x) — fly)] = =

. . |xy| (52/18
o L 3
x D = —>1=¢g

0

20



Fie ©>0,

f(x)

f(x)=1/x

21



Uniform Continuity

Example: If f : R — R and f/(z) is defined and i
bounded on an interval [a,b], then f is uniformly continuous on
[a,b]. However, even a function with an unbounded derivative
may be uniformly continuous. Consider

f(z) = vz, = €[0,1]

f is continuous (why?). We will show that f is uniformly con-
tinuous. Given € > 0, let § = 2. Then given any zg € [0, 1],

22



lx — xzg| < & implies by the Fundamental Theorem of Calculus
T 1

LOQ—ﬂdt
[z—z0| 1

/O S

\/lw — x|

V6

=

€

[f(z) — f(zo)| =

IA

A

Thus, fis uniformly continuous on [0, 1], even though f/(z) — oo
as x — 0.



Lipschitz Continuity

Definition 5. Let X,Y be normed vector spaces, E C X. A
function f . X — Y is Lipschitz on E if

K >0 s.t. [[f(z) - f(D)lly S Kllz —z|lx Vo,z€E

f is locally Lipschitz on E if

Veg € E de > 0 s.t. f is Lipschitz on B:(xg) N E

L Qe & A YO v NXEw

U&“W—\ - Ko\ L K

\ % "\
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Notions of Continuity

Lipschitz continuity is stronger than either continuity or uniform
continuity:

Lipsdaxz =2 |ocally Lipschitz = continuous
Lipschitz = uniformly continuous
i W eR
Every C1 function(is locally Lipschitz. (Recall that a function

f:R™ — R" is said to be C! if all its first partial derivatives
exist and are continuous.)

24



Homeomorphisms

Definition 6. Let (X,d) and (Y, p) be metric spaces. A function
f: X —Y is called a homeomorphism if it is one-to-one, onto,
continuous, and its inverse function is continuous.

Topological properties are invariant under homeomorphism:

25



Homeomorphisms

Suppose that f is a homeomorphism and U C X. Let g= f1:
Y — X.

yeg 1(U) & g(y) €U
& ye f(U)
U openin X = ¢ 1(U) is open in (f(X), p)
= f(U) is open in (f(X), p)

This says that (X,d) and <f(X),p|f(X)) are identical in terms of
properties that can be characterized solely in terms of open sets;
such properties are called *“topological properties.”
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