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Contraction Mapping Theorem

Theorem 11 (Thm. 7.16, Contraction Mapping Theorem). Let
(X,d) be a nonempty complete metric space and T : X — X a
contraction with modulus 8 < 1. Then

1. T has a unique fixed point z*.

2. For every xg € X, the sequence {x,} where

r1 = T(wo),azg = T(azl) = T(T(HZO)), veeey Iy = T(wn_l) for each n

converges to x*.
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Note that the theorem asserts both the existence and unigueness
of the fixed point, as well as giving an algorithm to find the fixed
point of a contraction.

Also note that the algorithm generates a sequence that con-
verges to the fixed point for any initial point xzg.

Later in the course we will discuss more general fixed point the-

orems which, in contrast, only guarantee existence, and are not
constructive.
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Proof. Define the sequence {z,} as above by first fixing g € X
and then letting zp, = T (x,,—1) = T"(xg) for n = 1,2,..., where
T" =T oTo...oT is the n-fold iteration of T. We first show
that {x,} is Cauchy, and hence converges to a limit z. Then

d(T(zn), T'(xp—1))

d(xn—l-la $n)

< 5d(xnaxn—1) — 5d(T(xn—1)aT(xn—2))
< B2d(zy_1,7n_2)
< B"d(x1,x0)
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Then for any n > m,

d(zn,zm) < d(zn,zp—1) +d(zp_1,29-2) + -+ d(a:m_H, Tm)
< (BB 4 4 8™)d(21, 70)
n—1
= d(z1,z0) Y B
{=m
o ol
< d(z1,z0) Y B
{=m
m
= Wd(a;l,a;o) (sum of a geometric series)
Fix e > 0. Since 5 d(a:l,acg) — 0 as m — oo, choose N(e) such
that for any m > N(e) d(a;l,a:g) < e. Then for n,m > N(¢),

m

d(xn, zm) < 1—d(3317330) <¢€



Therefore, {zn} is Cauchy. Since (X,d) is complete, =, — x* for
some z* € X.

Next, we show that z* is a fixed point of T.

T(z™) T< lim xn)

n—aoo
lim T'(xzy) since T is continuous
n—aoo

lim x
s 00 n—+1

ES
— X

so z* is a fixed point of T.

Finally, we show that there is at most one fixed point. Suppose z*
and y* are both fixed points of T', so T'(2*) = «* and T'(y*) = y*.



T hen

d(z™,y") = d(T ("), T(y"))
< Bd(z*,y")
= (1 -p3)d(=",y") < O
= d(z*,y*) < O

So d(z*,y*) = 0, which implies z* = y*.



Continuous Dependence on Paramters

Theorem 12. (Thm. 7.18’, Continuous Dependence on

Parameters) Let (X,d) and (£2,p) be two metric spaces and

T: X xS2— X. Foreachwe 2 letT, : X — X be defined by
Tw(z) =T(z,w)

Suppose (X,d) is complete, T is continuous in w, that is T(x,-) :
2 — X is continuous for each x € X, and 48 < 1 such that T,
Is a contraction of modulus 3 Vw € S2. Then the fixed point
function z* : Q2 — X defined by

z"(w) = Tu(z"(w))

IS continuous.
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Blackwell’'s Sufficient Conditions

An important result due to Blackwell gives a set of sufficient
conditions for an operator to be a contraction that is particularly
useful in dynamic programming problems.

Let X be a set, and let B(X) be the set of all bounded functions
from X to R. Then (B(X),|||le) is @ normed vector space.

Notice that below we use shorthand notation that identifies a
constant function with its constant value in R, that is, we write
interchangeably ¢ € R and a : X — R to denote the function
such that a(x) = a Vx € X.
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Blackwell’'s Sufficient Conditions

Theorem 13. (Blackwell’'s Sufficient Conditions) Consider
B(X) with the sup norm || - ||xc. Let T : B(X) — B(X) be
an operator satisfying

1. (monotonicity) f(x) < glx) Ve € X = (Tf)(x) < (Tg)(x) Vx €
X

2. (discounting) 33 € (0, 1) such that for everya > 0 and z € X,

(T(f +a)) (=) < (Tf)(z)+ Ba

Then T is a contraction with modulus (3.
31



Proof. Fix f,g € B(X). By the definition of the sup norm,
fl@) <g(@) +|f — glloo Vo € X

Then

(Tfz) < (T@+|f—9|lo)) (x) Ve X (monotonicity)
< (Tg)(x)+B8||f —9gllc VxEX (discounting)

Thus

(Tf)(z) — (Tg)(z) <BIf —glle Vz €X
Reversing the roles of f and g above gives

(Tg)(x) — (Tf)(z) <BIf —9gllc VzEX
Thus

1T(f) = T(9lloo < BIIf — glloo
Thus T is a contraction with modulus g3 [ ]
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Open Covers
Definition 1. A collection of sets
U= {U)\ "\ E /\} C7<4

in a metric space (X,d) is an open cover of A if Uy is open for
all A e \ and

UxenlUy 2 A

Notice that A may be finite, countably infinite, or uncountable.



Compactness

Definition 2. A set A in a metric space is compact if every open
cover of A contains a finite subcover of A. In other words, if
{Uy : X € A} is an open cover of A, there exist n € N and

A1, -+, An €\ such that A S D U
o~

AQU,\lu---UU,\n

This definition does not say “A has a finite open cover” (fortu-
nately, since this is vacuous...).

Instead for any arbitrary open cover you must specify a finite
subcover of this given open cover.



Compactness

Example: (0,1] is not compact in EL. (R widMA stondard wmekric)

To see this, let

— — 1 -
Then
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U, =(1,2)
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Given any finite subset {Umy,...,Um,} of U, let
m = max{mzy,...,mp} > ©

T hen

1
Uy Uy = Uy = (5,2) 2 (0, 1]

So (0,1] is not compact.

What about [0,1]? This argument doesn't work...



Compactness

Example: [0,00) is closed but not compact. (e R vl clandard
W\‘ZJ}\‘J"LL)\

To see that [0,00) is not compact, let . éJ)}O)

U={Un=(-1,m):meN} U Ciymi= (| )

Given any finite subset eV Lo o
{Unis- -y Uny} S AU epen cavel &
of U, let Lo )
O «m=max{mq,...,mp} <
Then -3 37

-3, 0) 4






Compactness

Theorem 1 (Thm. 8.14). Every closed subset A of a compact
metric space (X,d) is compact.

Proof. Let {Uy : A € A} be an open cover of A. In order to use
the compactness of X, we need to produce an open cover of X.
There are two ways to do this:

U;\ Oee,m S\ A P\ Q—’\QQQ—Q&

/\/

Uyu(x\4)  °
NUA{ o}, U)\O:X\A

We choose the first path, and let

Uy,=U,U(X\A4) > xe /\









Since A is closed, X \ A is open; since U, is open, SO is U/’\.

Thenz € X ==z € Aorxe X\A. Ifxe A INeANst x €
Uy CU). If instead z € X \ A, then VA € A, z € U}. Therefore,
X C UpeaUy, so {Uj : A€ A} is an open cover of X.

Since X is compact,

I, A EASE X CUY U UUY
Then

acEA = aeX
=S a,EU/’\Z, for some i
= ac Uy U(X\A)
= a € Uy,



SO
AgU,\lu---UU,\n

Thus A is compact.



Compactness

closed %A compact, but the converse is true: v~ qy FARIE L Spec

Theorem 2 (Thm. 8.15).If A is a compact subset of the metric
space (X,d), then A is closed.

Proof. Suppose by way of contradiction that A is not closed.
Then X \ A is not open, so we can find a point z € X \ A such
that, for every € > 0, AN B:(x) #= 0, and hence AN B:[x] # 0.

For n € N, let

Up =X \ Bl[x]

1

a\?‘hj\ 10
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Each U, is open, and

UpeNUn = X'\ {z} 2 4

since x € A. Therefore, {U, : n € N} is an open cover for A.

Since A is compact, there is a finite subcover {Upq,...,Un,}. Let
n = max{ni,. . nk} Then
"
= Un 2 Uj_1Un,
D A

But AN Bi[z] #0, so AZ X \ Bi[z] = Uy, a contradiction which

proves that A is closed. [ ]



Sequential Compactness

Definition 3. A set A in a metric space (X,d) is sequentially
compact if every sequence of elements of A contains a conver-
gent subsequence whose limit lies in A.

11



Sequential Compactness

Theorem 3 (Thms. 8.5, 8.11). A set A in a metric space (X, d)
iIs compact if and only if it is sequentially compact.

Proof. Suppose A is compact. We will show that A is sequen-

tially compact.

If not, we can find a sequence {z,} of elements of A such that
no subsequence converges to any element of A. Recall that a is
a cluster point of the sequence {z,} means that

Ve >0 {n:zpn € Be(a)} is infinite

and this is equivalent to the statement that there is a subse-
quence {xp, } converging to a. Thus, no element a € A can be a
cluster point for {z,}, and hence

Ya c A E'ffa > 0 s.t. {n - In, € Bga(a)} is finite (1)

12



Then
{Be¢,(a) :a € A}

is an open cover of A (if A is uncountable, it will be an un-
countable open cover). Since A is compact, there is a finite
subcover

{Beay(a1), s Begy(am)} AS Be (899 (an
Then Ty © A

{n:xzn € A} o

{n L Ty € <Bg; (ap)U---U Bgam(am))}

{n zpy € Be,, (ap)}U---U{n:zn € B, (am)}

so N is contained in a finite union of sets, each of which is finite

by Equation (1). Thus, N must be finite, a contradiction which
proves that A is sequentially compact.

Z
Nl



For the converse, see de |la Fuente.



Totally Bounded Sets

Definition 4. A set A in a metric space (X, d) is totally bounded
if, for every € > 0,

Jr1,...,2n € A s.t. A C U B:(x;)

QS?/QQLL\- . A < X '\g \Qcaxur\éuzgéf F\E( a @BB ond 2 xe)ﬁ
S o A %@("Q
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Totally Bounded Sets

c R

Example: Take A = [0,1] with the Euclidean metric. Given

e>0, letn > % Then we may take
=) ﬁ>_:\l 1 2

Ll — —HL2 — —y..., Lpn_-1 —
n n n

Then [0,1] C UPZTB:().

n—1

D/A:LD‘\]
e c e
P = -\
"L"(LD N - ;‘\—A—Q ’Q.__.. \
™
- —— ———



Totally Bounded Sets

Example: Consider X = [0, 1] with the discrete metric

)1 ifz#y
d(a:,y)—{ O ifz=y
X is not totally bounded. To see this, take ¢ = % Then for any
x, Be(x) = {x}, so given any finite set xq,...,zn,

U;,nle&?(xZ) — {xla s 7513n} Z [07 1]

However, X is bounded because X = B»(0).

\055 U\v\&@ ilb —\N:QYCK_;% \Qb\nf\éiﬂ&
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Totally Bounded Sets

Note that any totally bounded set in a metric space (X,d) is
also bounded. To see this, let A C X be totally bounded. Then
dx1,...,xn € A such that A C Bi(xz1)U---U B1(xn). Let

M=1+d(x1,z2) + -+ d(Tp_1,%n)

Then M < oo. Now fix a € A. We claim d(a,z1) < M. To
see this, notice that there is some nq € {1,...,n} for which
a € B1(xn,). Then

n -\

d(a’7xna) + Z d(xkaxk—l—l)
k=1

IA

d(a,x1)

n - |

< 14+ ) dzg, zpy1)
h=1
= M

16






Totally Bounded Sets

Remark 4. Every compact subset of a metric space is totally
bounded:

(?, >o\
Fix € and consider the open cover

;&

Us = {Be(a) 1 a € A}

If A is compact, then every open cover of A has a finite subcover:;
in particular, U must have a finite subcover, but this just says

that A is totally bounded.
=2 3 o, ., 2. N 5. %o

A C R lad v -0 Blad)

Converie  Srodse o eag (o v) Asiraly bownded o

X vt cawagast



Compactness and Totally Bounded Sets

Theorem 5 (Thm. 8.16). Let A be a subset of a metric space
(X,d). Then A is compact if and only if it is complete and totally
bounded.

. Proof. Here is a sketch of the proof; see de la Fuente for details.

Compact implies totally bounded (Remark 4). Suppose {zn} is
a Cauchy sequence in A. Since A is compact, A is sequentially
compact, hence {z,} has a convergent subsequence z,, — a € A.
Since {x,} is Cauchy, z, — a (Why?), so A is complete.

Conversely, suppose A is complete and totally bounded. Let
{xn} be a sequence in A. Because A is totally bounded, we
can extract a Cauchy subsequence {zn, } (why?). Because A
is complete, xp, — a for some a € A, which shows that A is
sequentially compact and hence compact. [ ]
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Compact «<— C(Closed and Totally Bounded

Putting these together: wXe Jesude Sraun leddaie S 8

Corollary 1. Let A be a subset of a complete metric space (X, d).
Then A is compact if and only if A is closed and totally bounded.

(% &) tomplere, A SXK e

A compact = A complete and totally bounded
= A closed and totally bounded
A closed and totally bounded = A complete and totally bounded
= A compact

20



Example: [0, 1] is compact in El. (R w3 standerd mekno)

E\ C/OW\'\P\:E)(Q i‘:’ \\4’} '\,S du:c;e.ész O ’\Q)C'Q\L\-D \oQu..méviC‘-‘?J
=) L‘b\:} *\-5 Q&MPQ.,Q:\’
Note: compact = closed and bounded, but converse need not
be true.

E.g. [0, 1] with the discrete metric.
RS M\ o VAN NS A e \N\w\d:\u 13 Ao e g bewrded
\Dua( “\EA_S *Q*G\_».\,) \gcmuxa{d y Seo xx\i‘\ Op\N\ﬁ:oSi
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Heine-Borel Theorem - E1l

Theorem 6 (Thm. 8.19, Heine-Borel). If A C El, then A is
compact if and only if A is closed and bounded.

<= Proof. Let A be a closed, bounded subset of R. Then A C [a,b]
for some interval [a,b]. Let {x,} be a sequence of elements of
[a,b]. By the Bolzano-Weierstrass Theorem, {z,} contains a
convergent subsequence with limit x € R. Since [a,b] is closed,
x € [a,b]. Thus, we have shown that [a,b] is sequentially com-
pact, hence compact. A is a closed subset of [a,b], hence A is
compact.

=>: Conversely, if A is compact, A is closed and bounded. [ ]

22



Heine-Borel T heorem - E"

Theorem 7 (Thm. 8.20, Heine-Borel). If A C E™, then A is
compact if and only if A is closed and bounded.

Proof. See de la Fuente. [ ]

Example: The closed interval

[a, 0] ={rx e R" :a; <x; <b; foreachi=1,...,n}

is compact in E™ for any a,b € R".
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Continuous Images of Compact Sets

Theorem 8 (8.21). Let (X,d) and (Y,p) be metric spaces. If
f: X — Y is continuous and C is a compact subset of (X,d),
then f(C) is compact in (Y, p).

Proof. There is a proof in de |la Fuente using sequential com-
pactness. Here we give an alternative proof using directly the
open cover definition of compactness.

Let {Uy, : A € A} be an open cover of f(C). For each point
c € C, f(c) € f(C) so f(c) € Uy, for some A € A, that is,
ce f1 <U,\C). Thus the collection {f‘l (Uy) : N E /\} is a cover
of C; in addition, since f is continuous, each set f_]L (Uy) is

24



open in C, so {f‘l (Uy) : A€ /\} is an open cover of C. Since C
IS compact, there is a finite subcover

U (O0) - 7 (O))

of C. Given z € f(C), there exiﬂ:ﬁsS ¢ € C such that f(¢) = =, and
ce f1 (U/\Z.) for some i, sO x € Uy, Thus, {Uy,,...,Uy,} is a
finite subcover of f(C), so f(C) is compact. [ ]




Extreme Value Theorem

Corollary 2 (Thm. 8.22, Extreme Value Theorem). Let C be a
compact set in a metric space (X,d), and suppose f:C — R is
continuous. Then f is bounded on C and attains its minimum
and maximum on C.
ANS

Proof. f(C) is compact by Theorem 8.21, hence closed and
bounded. Let M = sup f(C); M < oo. Then Vm > 0 there
exists ym € f(C) such that

1
M—-——<ym<M
™m

SO ym — M and {ym} C f(C). Since f(C) is closed, M € f(C),
i.e. there exists ¢ € C such that f(¢) = M = sup f(C), so
f attains its maximum at c¢. The proof for the minimum is
similar. [ ]
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Compactness and Uniform Continuity

Theorem 9 (Thm. 8.24). Let (X,d) and (Y, p) be metric spaces,
C a compact subset of X, and f . C — Y continuous. Then f is
uniformly continuous on C'.

Proof. Fix e > 0. We ighore X and consider f as defined on the
metric space (C,d). Given c e C, find 6(c¢) > 0 such that

z € C, d(z,c) < 25(c) = p(f(z), £(c)) < %
et
Ue = Bj(py(©)
Then
{Uec:ce C}
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IS an open cover of C. Since C is compact, there is a finite
subcover

{UC]_7°"7UCTL} C C,:Z —\) \/\CL
Let o
6 = min{d(c1),...,0(cn)}
Given z,y € C with d(z,y) < 6, note that = € U, for some
i€{1,...,n}, so d(x,c;) < d(c;).
d(y,Ci) d(y7x) + d(x,Ci)
o+ 6(¢;)

6(c;) +9(c;)
25((37;)

IAN A IA



SO

p(f(z), f(ci)) + p(f(ci), f(y))
_|_

p(f(x), f(y))

<
€
< —
2

3
2
€

which proves that f is uniformly continuous.





