Amoncemer

·PSa due tomorrow Tuesday 8/2

1

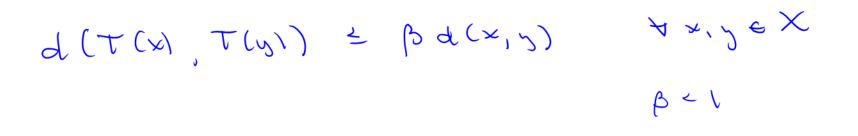
Econ 204 2022

Lecture 6

Outline

O. Contraction Mapping Theorem

- 1. Open Covers
- 2. Compactness
- 3. Sequential Compactness
- 4. Totally Bounded Sets
- 5. Heine-Borel Theorem
- 6. Extreme Value Theorem



Contraction Mapping Theorem

Theorem 11 (Thm. 7.16, Contraction Mapping Theorem). Let (X,d) be a nonempty complete metric space and $T : X \to X$ a contraction with modulus $\beta < 1$. Then

1. T has a unique fixed point x^* .

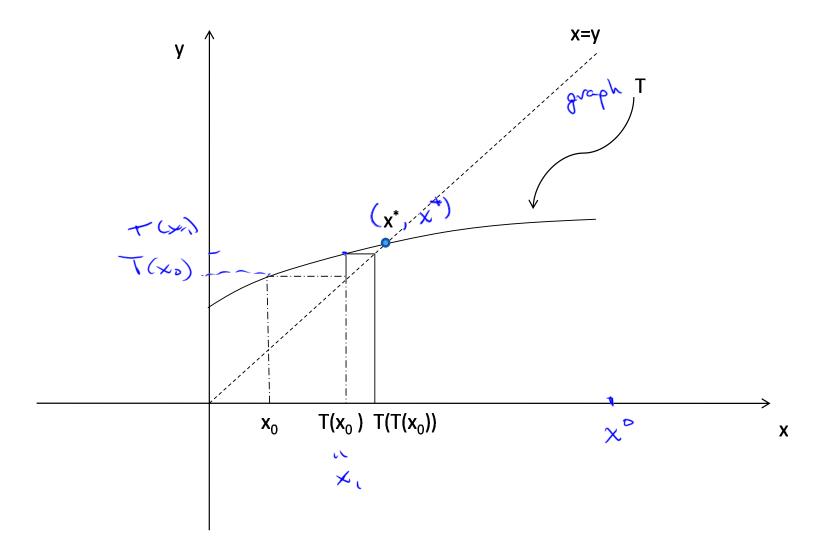
2. For every $x_0 \in X$, the sequence $\{x_n\}$ where

 $x_1 = T(x_0), x_2 = T(x_1) = T(T(x_0)), \dots, x_n = T(x_{n-1})$ for each n converges to x^* .

Note that the theorem asserts both the existence and uniqueness of the fixed point, as well as giving an algorithm to find the fixed point of a contraction.

Also note that the algorithm generates a sequence that converges to the fixed point for any initial point x_0 .

Later in the course we will discuss more general fixed point theorems which, in contrast, only guarantee existence, and are not constructive.



Proof. Define the sequence $\{x_n\}$ as above by first fixing $x_0 \in X$ and then letting $x_n = T(x_{n-1}) = T^n(x_0)$ for n = 1, 2, ..., where $T^n = T \circ T \circ ... \circ T$ is the *n*-fold iteration of *T*. We first show that $\{x_n\}$ is Cauchy, and hence converges to a limit *x*. Then

$$d(x_{n+1}, x_n) = d(T(x_n), T(x_{n-1}))$$

$$\leq \beta d(x_n, x_{n-1}) = \beta d(T(x_{n-1}), T(x_{n-2}))$$

$$\leq \beta^2 d(x_{n-1}, x_{n-2})$$

$$\vdots$$

$$\leq \beta^n d(x_1, x_0)$$

Then for any n > m,

$$d(x_n, x_m) \leq d(x_n, x_{n-1}) + d(x_{n-1}, x_{n-2}) + \dots + d(x_{m+1}, x_m)$$

$$\leq (\beta^{n-1} + \beta^{n-2} + \dots + \beta^m) d(x_1, x_0)$$

$$= d(x_1, x_0) \sum_{\ell=m}^{n-1} \beta^{\ell}$$

$$< d(x_1, x_0) \sum_{\ell=m}^{\infty} \beta^{\ell}$$

$$= \frac{\beta^m}{1 - \beta} d(x_1, x_0) \quad (\text{sum of a geometric series})$$

Fix $\varepsilon > 0$. Since $\frac{\beta^m}{1-\beta}d(x_1, x_0) \to 0$ as $m \to \infty$, choose $N(\varepsilon)$ such that for any $m > N(\varepsilon)$, $\frac{\beta^m}{1-\beta}d(x_1, x_0) < \varepsilon$. Then for $n, m > N(\varepsilon)$,

$$d(x_n, x_m) \leq \frac{\beta^m}{1-\beta} d(x_1, x_0) < \varepsilon$$

Therefore, $\{x_n\}$ is Cauchy. Since (X, d) is complete, $x_n \to x^*$ for some $x^* \in X$.

Next, we show that x^* is a fixed point of T.

$$T(x^*) = T\left(\lim_{n \to \infty} x_n\right)$$

= $\lim_{n \to \infty} T(x_n)$ since T is continuous
= $\lim_{n \to \infty} x_{n+1}$
= x^*

so x^* is a fixed point of T.

Finally, we show that there is at most one fixed point. Suppose x^* and y^* are both fixed points of T, so $T(x^*) = x^*$ and $T(y^*) = y^*$.

Then

$$egin{aligned} d(x^*,y^*) &= d(T(x^*),T(y^*))\ &\leq eta d(x^*,y^*)\ &\Rightarrow (1-eta) d(x^*,y^*) &\leq 0\ &\Rightarrow d(x^*,y^*) &\leq 0 \end{aligned}$$

So $d(x^*, y^*) = 0$, which implies $x^* = y^*$.

Continuous Dependence on Paramters

Theorem 12. (Thm. 7.18', Continuous Dependence on Parameters) Let (X,d) and (Ω,ρ) be two metric spaces and $T: X \times \Omega \rightarrow X$. For each $\omega \in \Omega$ let $T_{\omega}: X \rightarrow X$ be defined by

$$T_{\omega}(x) = T(x,\omega)$$

Suppose (X,d) is complete, T is continuous in ω , that is $T(x, \cdot)$: $\Omega \to X$ is continuous for each $x \in X$, and $\exists \beta < 1$ such that T_{ω} is a contraction of modulus $\beta \quad \forall \omega \in \Omega$. Then the fixed point function $x^* : \Omega \to X$ defined by

$$x^*(\omega) = T_{\omega}(x^*(\omega))$$

is continuous.

Blackwell's Sufficient Conditions

An important result due to Blackwell gives a set of sufficient conditions for an operator to be a contraction that is particularly useful in dynamic programming problems.

Let X be a set, and let B(X) be the set of all bounded functions from X to **R**. Then $(B(X), \|\cdot\|_{\infty})$ is a normed vector space.

Notice that below we use shorthand notation that identifies a constant function with its constant value in \mathbf{R} , that is, we write interchangeably $a \in \mathbf{R}$ and $a : X \to \mathbf{R}$ to denote the function such that $a(x) = a \ \forall x \in X$.

Blackwell's Sufficient Conditions

Theorem 13. (Blackwell's Sufficient Conditions) Consider B(X) with the sup norm $\|\cdot\|_{\infty}$. Let $T : B(X) \to B(X)$ be an operator satisfying

- 1. (monotonicity) $f(x) \le g(x) \ \forall x \in X \Rightarrow (Tf)(x) \le (Tg)(x) \ \forall x \in X$
- 2. (discounting) $\exists \beta \in (0, 1)$ such that for every $a \ge 0$ and $x \in X$, $(T(f + a))(x) \le (Tf)(x) + \beta a$

Then T is a contraction with modulus β .

Proof. Fix $f, g \in B(X)$. By the definition of the sup norm, $f(x) \le g(x) + \|f - g\|_{\infty} \ \forall x \in X$

Then

$$(Tf)(x) \leq (T(g+||f-g||_{\infty}))(x) \quad \forall x \in X \quad (\text{monotonicity}) \\ \leq (Tg)(x) + \beta ||f-g||_{\infty} \quad \forall x \in X \quad (\text{discounting})$$

Thus

$$(Tf)(x) - (Tg)(x) \le \beta ||f - g||_{\infty} \quad \forall x \in X$$

Reversing the roles of f and g above gives

$$(Tg)(x) - (Tf)(x) \le \beta ||f - g||_{\infty} \quad \forall x \in X$$

Thus

$$||T(f) - T(g)||_{\infty} \le \beta ||f - g||_{\infty}$$

Thus T is a contraction with modulus β

Open Covers

Definition 1. A collection of sets

 $\mathcal{U}=\{U_\lambda:\lambda\in\Lambda\}\qquad {\bf \subseteq \bigwedge}$ in a metric space (X,d) is an open cover of A if U_λ is open for all $\lambda\in\Lambda$ and

 $\cup_{\lambda\in\Lambda}U_{\lambda}\supseteq A$

Notice that Λ may be finite, countably infinite, or uncountable.

Compactness

Definition 2. A set A in a metric space is compact if every open cover of A contains a finite subcover of A. In other words, if $\{U_{\lambda} : \lambda \in \Lambda\}$ is an open cover of A, there exist $n \in \mathbb{N}$ and $\lambda_1, \dots, \lambda_n \in \Lambda$ such that $A \subseteq \bigcup_{\lambda_1} \bigcup_{\lambda_n} M_{\lambda_n}$

This definition does **not** say "A has a finite open cover" (fortunately, since this is vacuous...).

Instead for **any** arbitrary open cover you must specify a finite subcover of this **given** open cover.

Compactness

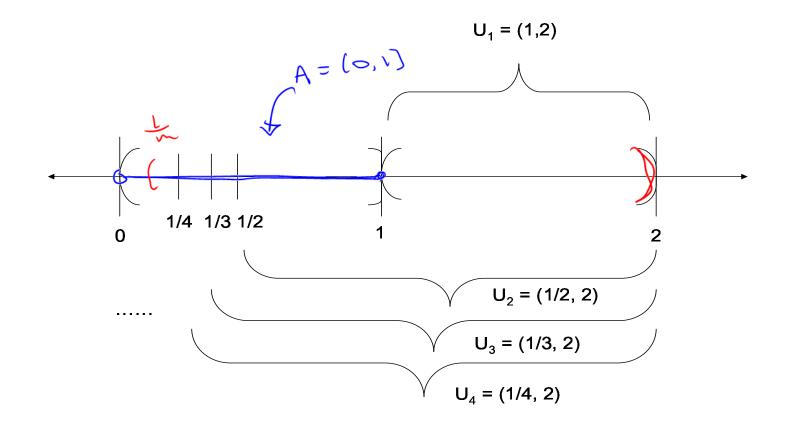
Example: (0,1] is not compact in E^1 . (R with standard metric)

To see this, let

$$\mathcal{U} = \left\{ U_m = \left(\frac{1}{m}, 2 \right) : m \in \mathbf{N} \right\}$$
 . Un open in

Then

$$\cup_{m \in \mathbb{N}} U_m = (0, 2) \supset (0, 1]$$



Given any finite subset $\{U_{m_1}, \ldots, U_{m_n}\}$ of \mathcal{U} , let

$$m = \max\{m_1, \ldots, m_n\} > \bigcirc$$

Then

$$\bigcup_{i=1}^{n} U_{m_i} = U_m = \left(\frac{1}{m}, 2\right) \not\supseteq (0, 1]$$

So (0,1] is not compact.

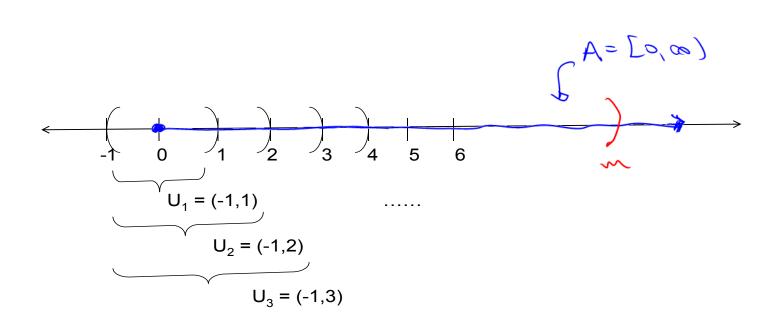
What about [0,1]? This argument doesn't work...

Compactness

(in R with standard **Example:** $[0,\infty)$ is closed but not compact. metric) To see that $[0,\infty)$ is not compact, let (-3,0) $\mathcal{U} = \{ U_m = (-1, m) : m \in \mathbb{N} \} \qquad \bigcup \quad (-1, m) = ($ men) 2[0,00] Given any finite subset =) U open cover of $\{U_{m_1}, \ldots, U_{m_n}\}$ [0, 00) of \mathcal{U} , let $o < m = \max\{m_1, \ldots, m_n\} < + \infty$ [-2, 3]Then

$$U_{m_1} \cup \cdots \cup U_{m_n} = (-1, m) \not\supseteq [0, \infty)$$

$$(-3, \circ) \qquad (-1, 4)$$



Compactness

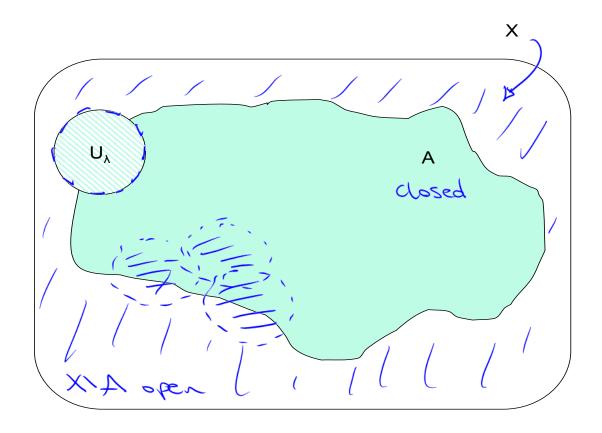
Theorem 1 (Thm. 8.14). Every closed subset A of a compact metric space (X,d) is compact.

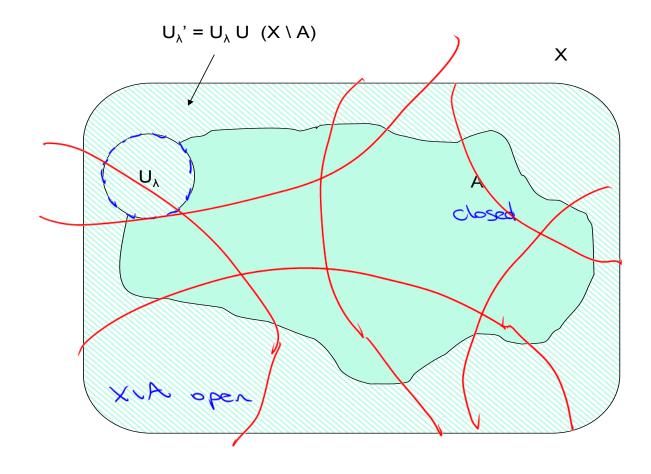
Proof. Let $\{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of A. In order to use the compactness of X, we need to produce an open cover of X. There are two ways to do this:

$$U'_{\lambda} = U_{\lambda} \cup (X \setminus A) \qquad \stackrel{\text{open since } A \text{ closed}}{\Lambda' = \Lambda \cup \{\lambda_0\}, \ U_{\lambda_0} = X \setminus A}$$

We choose the first path, and let

$$U'_{\lambda} = U_{\lambda} \cup (X \setminus A) \qquad \forall \quad \lambda \in \bigwedge$$





Since A is closed, $X \setminus A$ is open; since U_{λ} is open, so is U'_{λ} .

Then $x \in X \Rightarrow x \in A$ or $x \in X \setminus A$. If $x \in A$, $\exists \lambda \in \Lambda$ s.t. $x \in U_{\lambda} \subseteq U_{\lambda}'$. If instead $x \in X \setminus A$, then $\forall \lambda \in \Lambda$, $x \in U_{\lambda}'$. Therefore, $X \subseteq \bigcup_{\lambda \in \Lambda} U_{\lambda}'$, so $\{U_{\lambda}' : \lambda \in \Lambda\}$ is an open cover of X.

Since X is compact,

$$\exists \lambda_1, \dots, \lambda_n \in \Lambda \text{ s.t. } X \subseteq U'_{\lambda_1} \cup \dots \cup U'_{\lambda_n}$$

Then

$$a \in A \implies a \in X$$

$$\implies a \in U'_{\lambda_i} \text{ for some } i$$

$$\implies a \in U_{\lambda_i} \cup (X \setminus A)$$

$$\implies a \in U_{\lambda_i}$$

SO

$$A \subseteq U_{\lambda_1} \cup \dots \cup U_{\lambda_n}$$

Thus A is compact.

Compactness

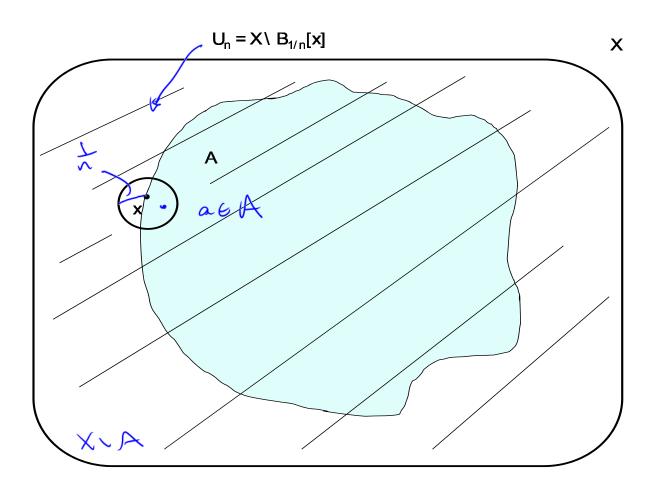
closed \Rightarrow compact, but the converse is true: in any metric space

Theorem 2 (Thm. 8.15). If A is a compact subset of the metric space (X, d), then A is closed.

Proof. Suppose by way of contradiction that <u>A</u> is not closed. Then $X \setminus A$ is not open, so we can find a point $x \in X \setminus A$ such that, for every $\varepsilon > 0$, $A \cap B_{\varepsilon}(x) \neq \emptyset$, and hence $A \cap B_{\varepsilon}[x] \neq \emptyset$. For $n \in \mathbb{N}$, let

$$U_n = X \setminus B_{\frac{1}{n}}[x]$$

$$\uparrow$$



Each U_n is open, and

$$\cup_{n\in\mathbb{N}}U_n=X\setminus\{x\}\supseteq A$$

since $x \notin A$. Therefore, $\{U_n : n \in \mathbb{N}\}$ is an open cover for A. Since A is compact, there is a finite subcover $\{U_{n_1}, \ldots, U_{n_k}\}$. Let $n = \max\{n_1, \ldots, n_k\}$. Then

But $A \cap B_{\frac{1}{n}}[x] \neq \emptyset$, so $A \not\subseteq X \setminus B_{\frac{1}{n}}[x] = U_n$, a contradiction which proves that A is closed.

Sequential Compactness

Definition 3. A set A in a metric space (X,d) is sequentially compact if every sequence of elements of A contains a convergent subsequence whose limit lies in A.

Sequential Compactness

Theorem 3 (Thms. 8.5, 8.11). A set A in a metric space (X, d) is compact if and only if it is sequentially compact.

 \implies Proof. Suppose A is compact. We will show that A is sequentially compact.

If not, we can find a sequence $\{x_n\}$ of elements of A such that no subsequence converges to **any** element of A. Recall that a is a cluster point of the sequence $\{x_n\}$ means that

 $\forall \varepsilon > 0 \ \{n : x_n \in B_{\varepsilon}(a)\}$ is infinite

and this is equivalent to the statement that there is a subsequence $\{x_{n_k}\}$ converging to a. Thus, **no** element $a \in A$ can be a cluster point for $\{x_n\}$, and hence

$$\forall a \in A \; \exists \varepsilon_a > 0 \text{ s.t. } \{n : x_n \in B_{\varepsilon_a}(a)\} \text{ is finite}$$
 (1)

Then

$$\{B_{\varepsilon_a}(a): a \in A\}$$

is an open cover of A (if A is uncountable, it will be an uncountable open cover). Since A is compact, there is a finite subcover

$$\left\{B_{\varepsilon_{a_1}}(a_1),\ldots,B_{\varepsilon_{a_m}}(a_m)\right\} \quad A \subseteq \mathcal{B}_{\varepsilon_{a_1}}(a_1) \cup \cdots \cup \mathcal{B}_{\varepsilon_{a_m}}(a_m)$$

Then 242 5

$$\subseteq A$$

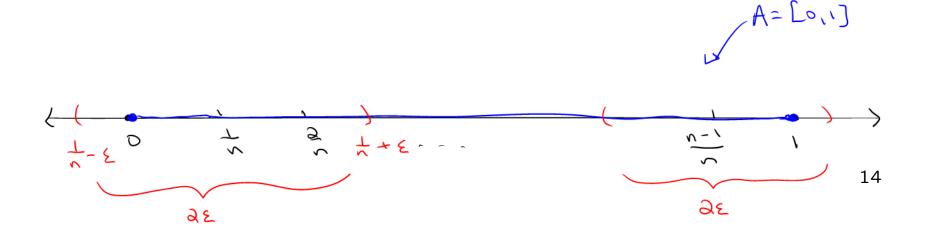
$$\mathbf{N} = \{n : x_n \in A\} \underset{\underset{a_1}{\in} a_1}{\cong} \left\{ n : x_n \in \left(B_{\varepsilon_{a_1}}(a_1) \cup \dots \cup B_{\varepsilon_{a_m}}(a_m) \right) \right\} \\ = \{n : x_n \in B_{\varepsilon_{a_1}}(a_1) \} \cup \dots \cup \{n : x_n \in B_{\varepsilon_{a_m}}(a_m) \}$$

so N is contained in a finite union of sets, each of which is finite by Equation (1). Thus, N must be finite, a contradiction which proves that A is sequentially compact. For the converse, see de la Fuente.

Definition 4. A set A in a metric space (X, d) is totally bounded if, for every $\varepsilon > 0$,

 $\exists x_1, \ldots, x_n \in A \text{ s.t. } A \subseteq \cup_{i=1}^n B_{\varepsilon}(x_i)$

Example: Take A = [0, 1] with the Euclidean metric. Given $\varepsilon > 0$, let $n > \frac{1}{\varepsilon}$. Then we may take $\Rightarrow \varepsilon > \frac{1}{\varepsilon}$. Then we may take $x_1 = \frac{1}{n}, x_2 = \frac{2}{n}, \dots, x_{n-1} = \frac{n-1}{n}$ Then $[0,1] \subset \bigcup_{k=1}^{n-1} B_{\varepsilon}(\frac{k}{n})$.



Example: Consider X = [0, 1] with the discrete metric

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

X is not totally bounded. To see this, take $\varepsilon = \frac{1}{2}$. Then for any $x, B_{\varepsilon}(x) = \{x\}$, so given any finite set x_1, \ldots, x_n ,

$$\bigcup_{i=1}^{n} B_{\varepsilon}(x_i) = \{x_1, \dots, x_n\} \not\supseteq [0, 1]$$

However, X is bounded because $X = B_2(0)$.

Note that any totally bounded set in a metric space (X,d) is also bounded. To see this, let $A \subset X$ be totally bounded. Then $\exists x_1, \ldots, x_n \in A$ such that $A \subset B_1(x_1) \cup \cdots \cup B_1(x_n)$. Let

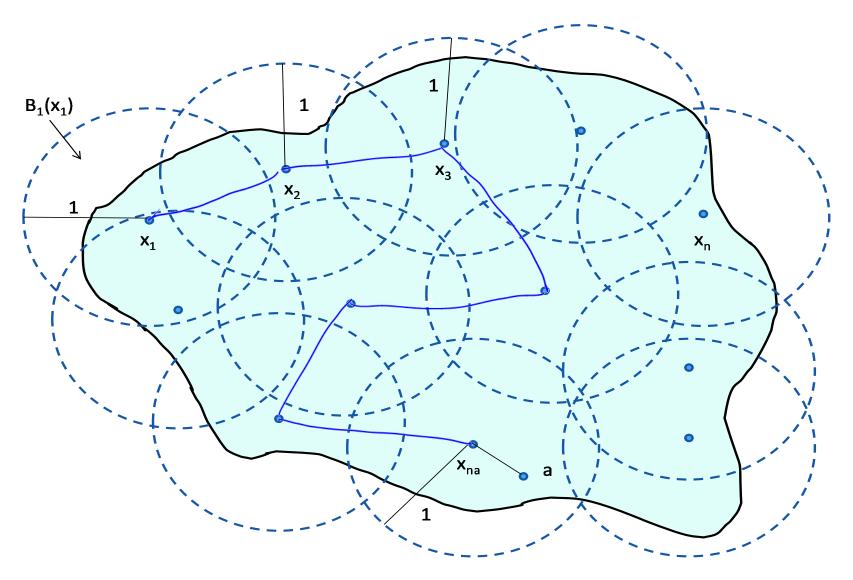
$$M = 1 + d(x_1, x_2) + \dots + d(x_{n-1}, x_n)$$

Then $M < \infty$. Now fix $a \in A$. We claim $d(a, x_1) < M$. To see this, notice that there is some $n_a \in \{1, \ldots, n\}$ for which $a \in B_1(x_{n_a})$. Then

$$d(a, x_{1}) \leq d(a, x_{n_{a}}) + \sum_{k=1}^{n-1} d(x_{k}, x_{k+1})$$

$$< 1 + \sum_{k=1}^{n-1} d(x_{k}, x_{k+1})$$

$$= M$$



Totally Bounded Sets

Remark 4. Every compact subset of a metric space is totally bounded:

```
(\epsilon > \circ)
Fix \epsilon and consider the open cover
```

 $\mathcal{U}_{\varepsilon} = \{B_{\varepsilon}(a) : a \in A\}$

If A is compact, then every open cover of A has a finite subcover; in particular, $\mathcal{U}_{\varepsilon}$ must have a finite subcover, but this just says that A is totally bounded.

=>
$$\exists a_1, \ldots, a_n \in A$$
 s.t.
 $A \subseteq B_{\varepsilon}(a_1) \cup \cdots \cup B_{\varepsilon}(a_n)$
converse false: e.g. (o_1) totally bounded 18
but not compact

Compactness and Totally Bounded Sets **Theorem 5** (Thm. 8.16). Let A be a subset of a metric space (N. 1) Theorem 4 is a subset of a metric space

(X,d). Then A is compact if and only if it is complete and totally bounded.

- \implies *Proof.* Here is a sketch of the proof; see de la Fuente for details. Compact implies totally bounded (Remark 4). Suppose $\{x_n\}$ is a Cauchy sequence in A. Since A is compact, A is sequentially compact, hence $\{x_n\}$ has a convergent subsequence $x_{n_k} \rightarrow a \in A$. Since $\{x_n\}$ is Cauchy, $x_n \rightarrow a$ (why?), so A is complete.
- Conversely, suppose A is complete and totally bounded. Let $\{x_n\}$ be a sequence in A. Because A is totally bounded, we can extract a Cauchy subsequence $\{x_{n_k}\}$ (why?). Because A is complete, $x_{n_k} \rightarrow a$ for some $a \in A$, which shows that A is sequentially compact and hence compact.

Compact \iff Closed and Totally Bounded

Putting these together: with results from lecture 5:

Corollary 1. Let A be a subset of a complet<u>e metric space (X, d).</u> Then A is compact if and only if A is closed and totally bounded.

- A compact \Rightarrow A complete and totally bounded
 - \Rightarrow A closed and totally bounded
- A closed and totally bounded \Rightarrow A complete and totally bounded
 - \Rightarrow A compact

Example: [0,1] is compact in E^1 . (R with standard notic) E' complete, [0,1] is closed and totally bounded \Rightarrow [Doin] is compact Note: compact \Rightarrow closed and bounded, but converse need not

be true.

E.g. [0,1] with the discrete metric.

Eo,1] with discrete metric is closed and bounded but not totally bounded, so not compact

R with standard metric

Heine-Borel Theorem - ${\rm E}^{1^{\prime}}$

Theorem 6 (Thm. 8.19, Heine-Borel). If $A \subseteq E^1$, then A is compact if and only if A is closed and bounded.

 \leftarrow Proof. Let A be a closed, bounded subset of \mathbf{R} . Then $A \subseteq [a, b]$ for some interval [a, b]. Let $\{x_n\}$ be a sequence of elements of [a, b]. By the Bolzano-Weierstrass Theorem, $\{x_n\}$ contains a convergent subsequence with limit $x \in \mathbf{R}$. Since [a, b] is closed, $x \in [a, b]$. Thus, we have shown that [a, b] is sequentially compact, hence compact. A is a closed subset of [a, b], hence A is compact.

 \rightarrow : Conversely, if A is compact, A is closed and bounded.

Heine-Borel Theorem - \mathbf{E}^n

Theorem 7 (Thm. 8.20, Heine-Borel). If $A \subseteq E^n$, then A is compact if and only if A is closed and bounded.

Proof. See de la Fuente.

Example: The closed interval

 $[a,b] = \{x \in \mathbf{R}^n : a_i \le x_i \le b_i \text{ for each } i = 1, \dots, n\}$

is compact in \mathbf{E}^n for any $a, b \in \mathbf{R}^n$.

Continuous Images of Compact Sets

Theorem 8 (8.21). Let (X,d) and (Y,ρ) be metric spaces. If $f: X \to Y$ is continuous and C is a compact subset of (X,d), then f(C) is compact in (Y,ρ) .

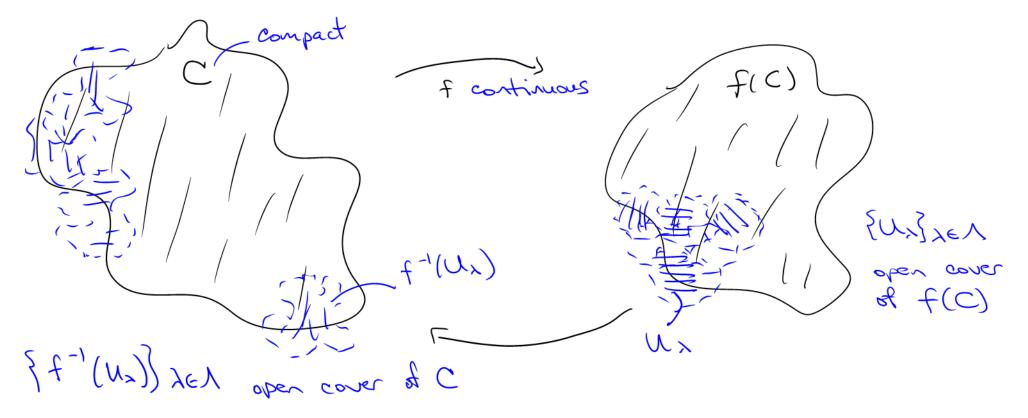
Proof. There is a proof in de la Fuente using sequential compactness. Here we give an alternative proof using directly the open cover definition of compactness.

Let $\{U_{\lambda} : \lambda \in \Lambda\}$ be an open cover of f(C). For each point $c \in C$, $f(c) \in f(C)$ so $f(c) \in U_{\lambda_c}$ for some $\lambda_c \in \Lambda$, that is, $c \in f^{-1}(U_{\lambda_c})$. Thus the collection $\{f^{-1}(U_{\lambda}) : \lambda \in \Lambda\}$ is a cover of C; in addition, since f is continuous, each set $f^{-1}(U_{\lambda})$ is

open in C, so $\{f^{-1}(U_{\lambda}) : \lambda \in \Lambda\}$ is an open cover of C. Since C is compact, there is a finite subcover

$$\left\{f^{-1}\left(U_{\lambda_{1}}\right),\ldots,f^{-1}\left(U_{\lambda_{n}}\right)\right\}$$

of C. Given $x \in f(C)$, there exists $c \in C$ such that f(c) = x, and $c \in f^{-1}(U_{\lambda_i})$ for some *i*, so $x \in U_{\lambda_i}$. Thus, $\{U_{\lambda_1}, \ldots, U_{\lambda_n}\}$ is a finite subcover of f(C), so f(C) is compact.



Extreme Value Theorem

Corollary 2 (Thm. 8.22, Extreme Value Theorem). Let C be a compact set in a metric space (X,d), and suppose $f : C \to \mathbf{R}$ is continuous. Then f is bounded on C and attains its minimum and maximum on C.

Proof. f(C) is compact by Theorem 8.21, hence closed and bounded. Let $M = \sup f(C)$; $M < \infty$. Then $\forall m > 0$ there exists $y_m \in f(C)$ such that

$$M - \frac{1}{m} \le y_m \le M$$

So $y_m \to M$ and $\{y_m\} \subseteq f(C)$. Since f(C) is closed, $M \in f(C)$, i.e. there exists $c \in C$ such that $f(c) = M = \sup f(C)$, so f attains its maximum at c. The proof for the minimum is similar.

Compactness and Uniform Continuity

Theorem 9 (Thm. 8.24). Let (X, d) and (Y, ρ) be metric spaces, C a compact subset of X, and $f : C \to Y$ continuous. Then f is uniformly continuous on C.

Proof. Fix $\varepsilon > 0$. We ignore X and consider f as defined on the metric space (C, d). Given $c \in C$, find $\delta(c) > 0$ such that

$$x \in C, \ d(x,c) < 2\delta(c) \Rightarrow \rho(f(x),f(c)) < \frac{\varepsilon}{2}$$

Let

$$U_c = B_{\delta(c)}(c)$$

Then

$$\{U_c : c \in C\}$$

is an open cover of C. Since C is compact, there is a finite subcover

$$\{U_{c_1},\ldots,U_{c_n}\}$$
 $C \subseteq \bigcup_{i=1}^{n} \bigcup_{c_i} \bigcup_{c_i}$

Let

$$\delta = \min\{\delta(c_1), \ldots, \delta(c_n)\}\$$

Given $x, y \in C$ with $d(x, y) < \delta$, note that $x \in U_{c_i}$ for some $i \in \{1, \ldots, n\}$, so $d(x, c_i) < \delta(c_i)$.

$$d(y,c_i) \leq d(y,x) + d(x,c_i)$$

$$< \delta + \delta(c_i)$$

$$\leq \delta(c_i) + \delta(c_i)$$

$$= 2\delta(c_i)$$

SO

$$\rho(f(x), f(y)) \leq \rho(f(x), f(c_i)) + \rho(f(c_i), f(y))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

which proves that f is uniformly continuous.