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Continuity for Correspondences

Definition 5. A correspondence Ψ : X → 2Y is called closed-

valued if Ψ(x) is a closed subset of Y for all x; Ψ is called

compact-valued if Ψ(x) is compact for all x.

For closed-valued correspondences these concepts can be more

tightly connected.

• A closed-valued and upper hemicontinuous correspondence

must have closed graph.

• For a closed-valued correspondence with a compact range,

upper hemicontinuity is equivalent to closed graph.
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Upper Hemicontinuity and Closed Graph

Theorem 4 (Not in de la Fuente). Suppose X ⊆ En and Y ⊆ Em,

and Ψ : X → 2Y .

(i) If Ψ is closed-valued and uhc, then Ψ has closed graph.

(ii) If Ψ has closed graph and there is an open set W with x0 ∈ W

and a compact set Z such that x ∈ W ∩X ⇒ Ψ(x) ⊆ Z, then

Ψ is uhc at x0.

(iii) If Y is compact, then Ψ has closed graph ⇐⇒ Ψ is closed-

valued and uhc.
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Proof. (i) Suppose Ψ is closed-valued and uhc. If Ψ does not

have closed graph, we can find a sequence (xn, yn) → (x0, y0),

where (xn, yn) lies in the graph of Ψ (so yn ∈ Ψ(xn)) but (x0, y0)

does not lie in the graph of Ψ (so y0 6∈ Ψ(x0)). Since Ψ is

closed-valued, Ψ(x0) is closed. Since y0 6∈ Ψ(x0), there is some

ε > 0 such that

Ψ(x0) ∩ B2ε(y0) = ∅

so

Ψ(x0) ⊆ E
m \ Bε[y0]

Let V = Em \ Bε[y0]. Then V is open, and Ψ(x0) ⊆ V . Since Ψ

is uhc, there is an open set U with x0 ∈ U such that

x ∈ U ∩ X ⇒ Ψ(x) ⊆ V



Since (xn, yn) → (x0, y0), xn ∈ U for n sufficiently large, so

yn ∈ Ψ(xn) ⊆ V

Thus for n sufficiently large, ‖yn − y0‖ ≥ ε, which implies that

yn 6→ y0, and (xn, yn) 6→ (x0, y0), a contradiction. Thus Ψ is

closed-graph.

(ii) Now, suppose Ψ has closed graph and there is an open set

W with x0 ∈ W and a compact set Z such that

x ∈ W ∩ X ⇒ Ψ(x) ⊆ Z

Since Ψ has closed graph, it is closed-valued. Let V be any open

set such that V ⊇ Ψ(x0). We need to show there exists an open

set U with x0 ∈ U such that

x ∈ U ∩ X ⇒ Ψ(x) ⊆ V



If not, we can find a sequence xn → x0 and yn ∈ Ψ(xn) such that

yn 6∈ V ∀n. Since xn → x0, xn ∈ W ∩X for all n sufficiently large,

and thus Ψ(xn) ⊆ Z for n sufficiently large. Since Z is compact,

we can find a convergent subsequence ynk → y′. Then

(xnk
, ynk

) → (x0, y′)

Since Ψ has closed graph, y′ ∈ Ψ(x0), so y′ ∈ V . Since V is

open, ynk
∈ V for all k sufficiently large, a contradiction. Thus,

Ψ is uhc at x0.

(iii) Follows from (i) and (ii).



Sequential Characterizations

Upper and lower hemicontinuity can be given sequential charac-

terizations that are useful in applications.

Theorem 5 (Thm. 11.2). Suppose X ⊆ En and Y ⊆ Em. A

compact-valued correspondence Ψ : X → 2Y is uhc at x0 ∈ X

if and only if, for every sequence {xn} ⊆ X with xn → x0, and

every sequence {yn} such that yn ∈ Ψ(xn) for every n, there is a

convergent subsequence {ynk
} such that lim ynk

∈ Ψ(x0).

Proof. See de la Fuente.

Note that this characterization of upper hemicontinuity requires

the correspondence to have compact values.
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Sequential Characterizations

Theorem 6 (Thm. 11.3). A correspondence Ψ : X → 2Y is lhc

at x0 ∈ X if and only if, for every sequence {xn} ⊆ X with xn →

x0, and every y0 ∈ Ψ(x0), there exists a companion sequence

{yn} with yn ∈ Ψ(xn) for every n such that yn → y0.

Proof. See de la Fuente.
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Linear Combinations and Spans

Definition 1. Let X be a vector space over a field F . A linear

combination of x1, . . . , xn ∈ X is a vector of the form

y =
n

∑

i=1

αixi where α1, . . . , αn ∈ F

αi is the coefficient of xi in the linear combination.

If V ⊆ X, the span of V , denoted spanV , is the set of all linear

combinations of elements of V .

A set V ⊆ X spans X if spanV = X.
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Linear Dependence and Independence

Definition 2. A set V ⊆ X is linearly dependent if there exist

v1, . . . , vn ∈ V and α1, . . . , αn ∈ F not all zero such that

n
∑

i=1

αivi = 0

A set V ⊆ X is linearly independent if it is not linearly dependent.

Thus V ⊆ X is linearly independent if and only if

n
∑

i=1

αivi = 0, vi ∈ V ∀i ⇒ αi = 0 ∀i
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Bases

Definition 3.A Hamel basis (often just called a basis) of a vector

space X is a linearly independent set of vectors in X that spans

X.

Example: {(1,0), (0,1)} is a basis for R
2 (this is the standard

basis).
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Example, cont: {(1,1), (−1,1)} is another basis for R2:

Suppose (x, y) = α(1, 1) + β(−1,1) for some α, β ∈ R

x = α − β

y = α + β

x + y = 2α

⇒ α =
x + y

2
y − x = 2β

⇒ β =
y − x

2

(x, y) =
x + y

2
(1,1) +

y − x

2
(−1,1)

Since (x, y) is an arbitrary element of R2, {(1,1), (−1,1)} spans
R2. If (x, y) = (0,0),

α =
0 + 0

2
= 0, β =

0 − 0

2
= 0
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so the coefficients are all zero, so {(1,1), (−1,1)} is linearly in-

dependent. Since it is linearly independent and spans R2, it is a

basis.

Example: {(1,0,0), (0,1,0)} is not a basis of R3, because it

does not span R3.

Example: {(1,0), (0,1), (1,1)} is not a basis for R2.

1(1,0) + 1(0,1) + (−1)(1,1) = (0,0)

so the set is not linearly independent.



Bases

Theorem 1 (Thm. 1.2’). Let V be a Hamel basis for X. Then

every vector x ∈ X has a unique representation as a linear combi-

nation of a finite number of elements of V (with all coefficients

nonzero).∗

Proof. Let x ∈ X. Since V spans X, we can write

x =
∑

s∈S1

αsvs

where S1 is finite, αs ∈ F , αs 6= 0, and vs ∈ V for each s ∈ S1.

Now, suppose

x =
∑

s∈S1

αsvs =
∑

s∈S2

βsvs

∗The unique representation of 0 is 0 =
∑

i∈∅ αibi.
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where S2 is finite, βs ∈ F , βs 6= 0, and vs ∈ V for each s ∈ S2.
Let S = S1 ∪ S2, and define

αs = 0 for s ∈ S2 \ S1

βs = 0 for s ∈ S1 \ S2

Then

0 = x − x

=
∑

s∈S1

αsvs −
∑

s∈S2

βsvs

=
∑

s∈S

αsvs −
∑

s∈S

βsvs

=
∑

s∈S

(αs − βs)vs

Since V is linearly independent, we must have αs − βs = 0, so
αs = βs, for all s ∈ S.

s ∈ S1 ⇔ αs 6= 0 ⇔ βs 6= 0 ⇔ s ∈ S2



so S1 = S2 and αs = βs for s ∈ S1 = S2, so the representation is

unique.



Bases

Theorem 2. Every vector space has a Hamel basis.

Proof. The proof uses the Axiom of Choice. Indeed, the theorem

is equivalent to the Axiom of Choice.
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Bases

A closely related result, from which you can derive the previous

result, shows that any linearly independent set V in a vector

space X can be extended to a basis of X.

Theorem 3. If X is a vector space and V ⊆ X is linearly indepen-

dent, then there exists a linearly independent set W ⊆ X such

that

V ⊆ W ⊆ spanW = X
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Bases

Theorem 4. Any two Hamel bases of a vector space X have the

same cardinality (are numerically equivalent).

Proof. The proof depends on the so-called Exchange Lemma,

whose idea we sketch. Suppose that V = {vλ : λ ∈ Λ} and

W = {wγ : γ ∈ Γ} are Hamel bases of X. Remove one vector

vλ0
from V , so that it no longer spans (if it did still span, then

vλ0
would be a linear combination of other elements of V , and

V would not be linearly independent). If wγ ∈ span(V \ {vλ0
})

for every γ ∈ Γ, then since W spans, V \ {vλ0
} would also span,

contradiction. Thus, we can choose γ0 ∈ Γ such that

wγ0 6∈ span
(

V \ {vλ0
}
)
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Because wγ0 ∈ spanV , we can write

wγ0 =
n

∑

i=0

αivλi

where α0, the coefficient of vλ0
, is not zero (if it were, then we

would have wγ0 ∈ span
(

V \ {vλ0
}
)

). Since α0 6= 0, we can solve

for vλ0
as a linear combination of wγ0 and vλ1

, . . . , vλn
, so

span
((

V \ {vλ0
}
)

∪ {wγ0}
)

⊇ spanV

= X

so
((

V \ {vλ0
}
)

∪ {wγ0}
)

spans X. From the fact that wγ0 6∈ span
(

V \ {vλ0
}
)

one can



show that
((

V \ {vλ0
}
)

∪ {wγ0}
)

is linearly independent, so it is a basis of X. Repeat this process

to exchange every element of V with an element of W (when

V is uncountable, this is done by a process called transfinite

induction). At the end, we obtain a bijection from V to W , so

that V and W are numerically equivalent.



Dimension

Definition 4.The dimension of a vector space X, denoted dimX,

is the cardinality of any basis of X.

For V ⊆ X, |V | denotes the cardinality of the set V .
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Dimension

Example: The set of all m × n real-valued matrices is a vector

space over R. A basis is given by

{Eij : 1 ≤ i ≤ m,1 ≤ j ≤ n}

where
(

Eij

)

k`
=

{

1 if k = i and ` = j

0 otherwise.

The dimension of the vector space of m × n matrices is mn.
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Dimension and Dependence

Theorem 5 (Thm. 1.4). Suppose dimX = n ∈ N. If V ⊆ X and

|V | > n, then V is linearly dependent.
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Dimension and Dependence

Theorem 6 (Thm. 1.5’). Suppose dimX = n ∈ N, V ⊆ X, and

|V | = n.

• If V is linearly independent, then V spans X, so V is a Hamel

basis.

• If V spans X, then V is linearly independent, so V is a Hamel

basis.
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Linear Transformations

Definition 5. Let X and Y be two vector spaces over the field

F . We say T : X → Y is a linear transformation if

T(α1x1 + α2x2) = α1T(x1) + α2T(x2) ∀x1, x2 ∈ X, α1, α2 ∈ F

Let L(X, Y ) denote the set of all linear transformations from X

to Y .
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Linear Transformations

Theorem 7. L(X, Y ) is a vector space over F .

Proof. First, define linear combinations in L(X, Y ) as follows.

For T1, T2 ∈ L(X, Y ) and α, β ∈ F , define αT1 + βT2 by

(αT1 + βT2)(x) = αT1(x) + βT2(x)

We need to show that αT1 + βT2 ∈ L(X, Y ).

(αT1 + βT2)(γx1 + δx2)

= αT1(γx1 + δx2) + βT2(γx1 + δx2)

= α (γT1(x1) + δT1(x2)) + β (γT2(x1) + δT2(x2))

= γ (αT1(x1) + βT2(x1)) + δ (αT1(x2) + βT2(x2))

= γ (αT1 + βT2) (x1) + δ (αT1 + βT2) (x2)
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so αT1 + βT2 ∈ L(X,Y ).

The rest of the proof involves straightforward checking of the

vector space axioms.



Compositions of Linear Transformations

Given R ∈ L(X, Y ) and S ∈ L(Y,Z), S ◦ R : X → Z. We will

show that S ◦R ∈ L(X, Z), that is, the composition of two linear

transformations is linear.

(S ◦ R)(αx1 + βx2) = S(R(αx1 + βx2))

= S(αR(x1) + βR(x2))

= αS(R(x1)) + βS(R(x2))

= α(S ◦ R)(x1) + β(S ◦ R)(x2)

so S ◦ R ∈ L(X, Z).
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Kernel and Rank

Definition 6. Let T ∈ L(X,Y ).

• The image of T is ImT = T(X)

• The kernel of T is ker T = {x ∈ X : T(x) = 0}

• The rank of T is RankT = dim(ImT)
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Rank-Nullity Theorem

Theorem 8 (Thms. 2.9, 2.7, 2.6: The Rank-Nullity Theorem).

Let X be a finite-dimensional vector space, T ∈ L(X,Y ). Then

ImT and ker T are vector subspaces of Y and X respectively, and

dimX = dimker T + RankT
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Kernel and Rank

Theorem 9 (Thm. 2.13). T ∈ L(X,Y ) is one-to-one if and only

if ker T = {0}.

Proof. Suppose T is one-to-one. Suppose x ∈ ker T . Then

T(x) = 0. But since T is linear, T(0) = T(0 · 0) = 0 · T(0) = 0.

Since T is one-to-one, x = 0, so ker T = {0}.

Conversely, suppose that ker T = {0}. Suppose T(x1) = T(x2).

Then

T(x1 − x2) = T(x1)− T(x2)

= 0

which says x1 − x2 ∈ ker T , so x1 − x2 = 0, so x1 = x2. Thus, T

is one-to-one.
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Invertible Linear Transformations

Definition 7. T ∈ L(X, Y ) is invertible if there exists a function

S : Y → X such that

S(T(x)) = x ∀x ∈ X

T(S(y)) = y ∀y ∈ Y

Denote S by T−1.

Note that T is invertible if and only if it is one-to-one and onto.

This is just the condition for the existence of an inverse function.

The linearity of the inverse follows from the linearity of T .
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Invertible Linear Transformations

Theorem 10 (Thm. 2.11). If T ∈ L(X, Y ) is invertible, then

T−1 ∈ L(Y,X), i.e. T−1 is linear.

Proof. Suppose α, β ∈ F and v, w ∈ Y . Since T is invertible, there

exist unique v′, w′ ∈ X such that

T(v′) = v T−1(v) = v′

T(w′) = w T−1(w) = w′ .

Then

T−1(αv + βw) = T−1
(

αT(v′) + βT(w′)
)

= T−1
(

T(αv′ + βw′)
)

= αv′ + βw′

= αT−1(v) + βT−1(w)
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so T−1 ∈ L(Y, X).



Linear Transformations and Bases

Theorem 11 (Thm. 3.2). Let X and Y be two vector spaces

over the same field F , and let V = {vλ : λ ∈ Λ} be a basis

for X. Then a linear transformation T ∈ L(X, Y ) is completely

determined by its values on V , that is:

1. Given any set {yλ : λ ∈ Λ} ⊆ Y , ∃T ∈ L(X, Y ) s.t.

T(vλ) = yλ ∀λ ∈ Λ

2. If S, T ∈ L(X,Y ) and S(vλ) = T(vλ) for all λ ∈ Λ, then S = T .
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Proof. 1. If x ∈ X, x has a unique representation of the form

x =
n

∑

i=1

αivλi
αi 6= 0 i = 1, . . . , n

(Recall that if x = 0, then n = 0.) Define

T(x) =
n

∑

i=1

αiyλi

Then T(x) ∈ Y . The verification that T is linear is left as an

exercise.
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2. Suppose S(vλ) = T(vλ) for all λ ∈ Λ. Given x ∈ X,

S(x) = S





n
∑

i=1

αivλi





=
n

∑

i=1

αiS
(

vλi

)

=
n

∑

i=1

αiT
(

vλi

)

= T





n
∑

i=1

αivλi





= T(x)

so S = T .



Isomorphisms

Definition 8. Two vector spaces X and Y over a field F are

isomorphic if there is an invertible T ∈ L(X, Y ).

T ∈ L(X,Y ) is an isomorphism if it is invertible (one-to-one and

onto).

Isomorphic vector spaces are essentially indistinguishable as vec-

tor spaces.
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Isomorphisms

Theorem 12 (Thm. 3.3). Two vector spaces X and Y over the

same field are isomorphic if and only if dimX = dimY .

Proof. Suppose X and Y are isomorphic, and let T ∈ L(X, Y ) be

an isomorphism. Let

U = {uλ : λ ∈ Λ}

be a basis of X, and let vλ = T(uλ) for each λ ∈ Λ. Set

V = {vλ : λ ∈ Λ}

Since T is one-to-one, U and V have the same cardinality. If
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y ∈ Y , then there exists x ∈ X such that

y = T(x)

= T





n
∑

i=1

αλi
uλi





=
n

∑

i=1

αλi
T

(

uλi

)

=
n

∑

i=1

αλi
vλi

which shows that V spans Y . To see that V is linearly indepen-



dent, suppose

0 =
m
∑

i=1

βivλi

=
m
∑

i=1

βiT
(

uλi

)

= T





m
∑

i=1

βiuλi





Since T is one-to-one, ker T = {0}, so

m
∑

i=1

βiuλi
= 0

Since U is a basis, we have β1 = · · · = βm = 0, so V is lin-

early independent. Thus, V is a basis of Y ; since U and V are

numerically equivalent, dimX = dimY .



Now suppose dimX = dimY . Let

U = {uλ : λ ∈ Λ} and V = {vλ : λ ∈ Λ}

be bases of X and Y ; note we can use the same index set Λ for

both because dimX = dimY . By Theorem 3.2, there is a unique



T ∈ L(X,Y ) such that T(uλ) = vλ for all λ ∈ Λ. If T(x) = 0, then

0 = T(x)

= T





n
∑

i=1

αiuλi





=
n

∑

ı=1

αiT
(

uλi

)

=
n

∑

ı=1

αivλi

⇒ α1 = · · · = αn = 0 since V is a basis

⇒ x = 0

⇒ ker T = {0}

⇒ T is one-to-one



If y ∈ Y , write y =
∑m

i=1 βivλi
. Let

x =
m
∑

i=1

βiuλi

Then

T(x) = T





m
∑

i=1

βiuλi





=
m
∑

i=1

βiT(uλi
)

=
m
∑

i=1

βivλi

= y

so T is onto, so T is an isomorphism and X,Y are isomorphic.




