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Rank-Nullity Theorem

Theorem 8 (Thms. 2.9, 2.7, 2.6: The Rank-Nullity Theorem).
Let X be a finite-dimensional vector space, T € L(X,Y). Then
Im T and ker ' are vector subspaces of Y and X respectively, and

dimX =dimkerT 4+ RankT

———" -

T\ “\ chor Suks paces
S%Q)\_CL" ® , Qs v L Ker V'  owe NG P

o Ne S\\J” ,,.)\J\.L,X o bl = e A
w;& o \chs:\&- Sﬁbf >Q
’T

Y (@(\] o o lpss e

P

-]

- Q,\,L.SG’Z,J\(& Arc i\l\‘} ,-)\§\$\U\31)-.
e %\l\@\d) S\T\:") \.\ y 77 o

18



Kernel and Rank

Theorem 9 (Thm. 2.13).T € L(X,Y) is one-to-one if and only
if kerT = {0}.

- Proof. Suppose T is one-to-one. Suppose xz € ker1I'. Then

T(x) = 0. But since T is linear, T(0) =T(0-0) =0-T7T(0) = 0.
Since T is one-to-one, x = 0, so kerT = {0}.

. Conversely, suppose that kerT = {0}. Suppose T(x1) = T (x3).

T hen

T(x1) — T (x2)
0

which says 1 —xo € ker1', sO x1 — x> =0, SO x1 = xo. Thus, T
is one-to-one. [ ]

T(x1 — x2)

19



Invertible Linear Transformations

Definition 7.7 € L(X,Y) is invertible if there exists a function
S:Y — X such that
S(T(x)) = = Vze X NCUEREY
T(S(y) = y Vyey Tos = &
Denote S by T 1.

Note that T is invertible if and only if it is one-to-one and onto.
This is just the condition for the existence of an inverse function.
The linearity of the inverse follows from the linearity of T.j

Cooe wov W\ Qe L)
20



Invertible Linear Transformations

Theorem 10 (Thm. 2.11).If T € L(X,Y) is invertible, then
T-1e L(Y,X), i.e. T is linear.

Proof. Suppose o, € FFand v,w € Y. Since T is invertible, there
exist unique v/, w’ € X such that

T = v T 1) = o
T(w) = w T Hw) = o
Then ~ W
T Y av+ pw) = 71 (aTEv’) +5T&u’)) P ERELEN
== T_l <T(ow’—|—6w’)) (< L;_f\o_@_r\
= av’' + Bu’ (deSn & T

oT 1) + BT M w) (gefor & ~, =)
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so 71
e L(Y, X).



Linear Transformations and Bases

Theorem 11 (Thm. 3.2).Let X and Y be two vector spaces
over the same field F, and let V. = {vy : A € A} be a basis

for X. Then a linear transformation T € L(X,Y) is completely
determined by its values on V, that is:

1. Given any set {yy : Ae AN} CY\3IT ¢ L(X,Y) s.t.

T(UA) =Yy, VAEN

2. IfF S, T € L(X,Y) and S(vy) =T(vy) forallXxe N, then S =T.

22
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Proof. 1. If x € X, x has a unique representation of the form

n ) Ji;r%m -
xr = ZO‘W)\Z- a;F=0t=1,...,n

=1 R >\,\’—"~, >\,\_
(Recall that if £ = 0, then n = 0.) Define
n _ H\TL\J ,\L\ _ _ ;{i \
T(x) = Y ogyy, (g IR )
1=1 \0\3 &Q/QV‘
Then T'(z) € Y. The verification that T is linear is left as an
exercise.
_ — ~(=2Vy & L lwh.
\L\é%*gw\—'\g 23



2. Suppose S(vy) = T(vy) for all A € A. Given z € X,

so S ="1T.

S(x)

S ( zn: O‘z'v)\z)

i ;S <v>\i) (S U ~eor

[
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Isomorphisms

Definition 8. Two vector spaces X and Y over a field F are
isomorphic if there is an invertible T € L(X,Y).

T € L(X,Y) is an isomorphism if it is invertible (one-to-one and
onto).

Isomorphic vector spaces are essentially indistinguishable as vec-
tor spaces.

24



Isomorphisms

Theorem 12 (Thm. 3.3). Two vector spaces X andY over the
same field are isomorphic if and only if dimX =dimY.

. Proof. Suppose X and Y are isomorphic, and let T e L(X,Y) be
an isomorphism. Let

U= {UJ)\ T A E /\}
be a basis of X, and let vy, = T'(u)) for each A € A. Set
V = {U)\ T E /\}

Since T is one-to-one, U and V have the same cardinality. If
\\

— (W)
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10 yeY, then there exists x € X such that
LT ‘\,5. c;f\f\tc's\

y = T(x)
n
= T ZOQ\Z.UAZ
1=1
n \ -
— SanT(u)  (wmeartyk T
—
Zn
— QN VN [ Sefom &% Vo)
1=1

which shows that V spans Y. To see that V is linearly indepen-



dent, suppose

0 = Zﬁz?))\z
i=1
m \
— ZﬁzT <u)\z) ( daden S N
i=1
m
= T | ) Biuy, (v \Uimeor )
1=1
Since T is one-to-one, kerT = {0}, so
m
Y Biuy, =0
i=1
Since U is a basis, we have 1 = --- = 85, = 0, so V is lin-

early independent. Thus, V is a basis of Y since U and V are
numerically equivalent, dimX = dimY.
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— = Now suppose dimX =dimY. Let
U=A{uy: AXeA}and V ={vy,: A €N}

be bases of X and Y; note we can use the same index set A for
both because dimX = dimY. By Theorem 3.2, there is a unique

%
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T € L(X,Y) such that T'(uy) = vy forall A e A. If T'(z) = 0, then

1 ﬁL:D =L 7 0 = T(a:)

n
= T(Z Oéz'UAZ-)
1=1

oL’ <u>\z) (T Waeor D

O{iUAi (v L N = N N \d'ﬁu)

a1 =+ =ap =0 since V is a basis
$:O = _\ZOL‘\; k)‘,\'u
vEoN

kerT = {0}
T is one-to-one

L 44l



T s oAto:
IfyeY, write y = 2?7’:1 ﬁi?))\z.. Let

m
z =) Biuy,

i=1
T hen

T(zx) = T (Z 5#’0\2-)
= Z BiT(uy,) (v Gasoer)

:y_

so T is onto, so T is an isomorphism and X,Y are isomorphic. [
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Quotient Vector Spaces .- X
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Given a vector space X and a vector subspace W of X,
an equivalence relation b \
g \% N( e\Q (= —w e@

r~Yy < xz—yeWw

Form a new vector space X/W: the set of vectors is ( )
= = X%
{[x] : x € X} "2 &

where [z] denotes the equivalence class of x with respect to ~.
X/W is read “X mod W".

Note that the vectors in X/W are sets of vectors in X: for x € X,

[z] ={z+w:we W}
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Quotient Vector Spaces

We claim that X/W can be viewed as a vector space over F.
Define the vector space operations +,- in X/W as follows:

Define

[x] + [v] [ 4+ y]

alz] = [ox]

EXxercise: Verify that ~ is an equivalence relation and that vector
addition and scalar multiplication are well—defined.k

Then X/W is a vector space over F' with these definitions for +

and - (weve e raSe) . c -
e Q\peoD - )Q)L)ﬁ)\_ﬁ}\&e\(.)%de ‘

3.
(=)= (1 ) Lwl = Cad
) Lerql s L eq), (o) =0 )



Quotient Vector Spaces

Example: Let X = R3 and let W = {z € R3 : 21 = 2o = 0}.
Then for x,y€R3, W = {wc, CR?: w 3 coJo\w;\ .~
rx~y <= xTz—yew S"NWBGC@S
— 21 —yY1=0,20—-y2=0
— X1 =Y, T2 = Y2
and
[z] ={z+w:weW}={(x1,22,2) : z € R}

So the equivalence class corresponding to x is the line in R3
through z parallel to the axis of the third coordinate.
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Example, cont.

What is X/W?7? Intuitively this equivalence relation ignores the
third coordinate, and we can identify the equivalence class [x]
with the vector (z1,z2) € R2.

The next two results show how to formalize this connection.



Quotient Vector Spaces

Theorem 1. If X is a vector space with dimX = n for some
n € N and W is a vector subspace of X, then

dim(X/W) =dimX —dimW
Proof. (Sketch) Begin with a basis {wi,...,w:} for W, and a
basis {[z1],..., [x¢]} for X/W. Show that

{w,...,we} U{x1,..., 21}
is a basis for X.
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Quotient Vector Spaces

Theorem 2. Let X and Y be vector spaces over the same field
F and T € L(X,Y). ThenImT is isomorphic to X/ kerT.

Proof. Notice that if X is finite-dimensional, then

dim(X/ kerT) dimX —dimkerT (by the previous theorem)
RankT  (by the Rank-Nullity Theorem)

dimImT

so X/ kerT is isomorphic to ImT. (why??)

We prove that this is true in general, and that the isomorphism
IS natural.



Define T : X/ kerT — ImT by

T([z]) = T(x) (o wral)
We first need to check that this is well-defined, that is, that if
(] = [«] then T'([z]) = T([z]).

X & ] =[z] = z~2

/
x—x € kerT
T(x—2z')=0 - TGO TO) Cruwmﬂ

T(z) =T(z)

L4

so T is well-defined.

Clearly, T : X/ kerT — ImT. It is easy to check that T is linear,



soT € L(X/kerT,ImT). Next we show that T is an isomorphism.

V- T([=]) =T(y]) = T(z)="T(y)
T(x—y)=0
x—y € kerT
T~y

[z] = [v]

R

so T is one-to-one.

swnke % yelmT = dre X st T(zx)=y
S T =y = 70

so T is onto, hence T is an isomorphism.

(v



Example: Consider T € L(R3,R?) defined by

T(x1,x0,23) = (x1,22)
T hen

- BNPERPVN
kerT = {z € R3: 2] =z, = 0} = PQ

PJQ;J.\C;\J-S Q’%"’O\-M
IS the x3-axis.

Given z, the equivalence class [z] is just the line through x parallel
to the z3-axis.

T([z]) = T(z1, 22, 23) = (x1,72)
and
ImMT =R?, X/kerT 2XR?=ImT

as we suggested intuitively above (here the symbol = denotes
isomorphism, that is, we write Y = Z if Y and Z are isomorphic.)

9



Coordinate Representations
( o~es )

Every real vector space X with dimension n is isomorphic to R".
What's the isomorphism?

Let X be a finite-dimensional vector space over R with dimX =
n. Fix any Hamel basis V = {v1,...,vp} of X. Any z € X has a
unigue representation

n
r= ) Bjv
j=1
(here, we allow G, = 0). ™
] b 2K
\5;&_/5"_:;'1"; - 51 \J
crdy (x) = : c R"
Bn N
\!

Ao
a‘[;‘ NS N thqgaﬁ&( 10

(Wl

Coo vV é\ \ J\oéﬁe— \{&@qe_&l_,\%&:\v’“\ e



“f‘ i.\')l)"')\r"% \_Oa—/g:\'s L—D( %

crdy (x) is the vector of coordinates of = with respect to the basis
V.

Melvest o (1) (0) (0)
0 1 |==- = 0

crdy(v1) = | crdy(vp) = | crdy (vp) = | ¢
A O

0 0
\ 0/ \ 0 ) \1)

crdy is an isomorphism from X to R"




Matrix Representations of Linear
Transformations

Suppose T'e L(X,Y), dimX =n, dimY = m. Fix bases

V = {vq1,...,un} of X
W = {wqi,...,wn} of Y

T(v;) €Y, so o
m {er  sSoma °<‘¢J‘4 )™
T( = Z O W5 CGLSa;f\ oo bih-;:c’)
Define
@11 - Olp
MtCIZW’V(T) = : . :
sé”“ﬁkai)“’ A e A lee & 11
¢ \F (<X 1&9‘(‘5 W L‘Ool’"‘éw:./\&’}\c—g N Q_b&:a-"a\"m”
W\ 44\0}( / N:y\,- N o “ (9 ) weeA O
A \ ’\) 0’/\5\ "\’(\J‘:\ O



Matrix Representations of Linear
Transformations

Notice that the columns are the coordinates (expressed with
respect to W) of T'(v1),...,T(vy).

Observe
1
11 - O1p 0 11
Am1l " Omn O A1
2 T
SO _
CrA\! (VO Cur LV O L\J‘“

Mtz (T) - crdy (v;) = crdw(T(v;)) )
=> Mtay v (T) -crdy(z) = crdy(T(z)) Ve X

12



Matrix Representations

Multiplying a vector by a matrix does two things:

e Computes the action of T

e Accounts for the change in basis

13



Lesis Lor X besie for N
% K
Example: X =Y =R?2, V ={(1,0),(0,1)}, W = {(1,1),(-1,1)},
T = 1d, that is, T'(x) = x for each .

Mtz (T) # ( (1) (1) )

Mtxyyy(T) is the matrix that changes basis from V to W.

14



How do we compute it?

JTL\J\\:Ul — (170)

Q11 — Q21

o11 + ao1

2011

a1

T by, =vp = (0, 1)
12 — Q22

o12 + oo

20012

a2

L—«D‘:\f— Sﬂ:.r
T N= Y

Q»bc:af‘&- JLPIQ,%L&)YDJ‘VLQ’\S og

a11(1,1) 4+ ar1(—1,1)

1
0
1 1 A
,Oé]_]_ — = A N
1 2 _—ﬁ Q’F&U\)(\j“\_(a,\5—>
2 "
a12(1,1) + axa(-1,1) T
0
1
1 1
y & —_
12 5
1 3)
- R -
2 =) Cd\f‘cé\\b)&ﬂa x

V)



So

Mtww,v(iél) = ( _11//22 ig )

crh Lé;rw 3) ES IS

c,\ré\w CURN ek olVe)



Matrix Representations

Theorem 3 (Thm. 3.5"). Let X and Y be vector spaces over
the same field ', with dimX = n, dimY = m. Then L(X,Y),
the space of linear transformations from X to Y, is isomorphic
to F,,xn, the vector space of m x n matrices over F. If V =

{vi,...,vn} is a basis for X and W = {w1,...,wm} iS a basis for
Y, then

Mth,V € L(L(X,Y), Fruxn)

and Mtxyyy is an isomorphism from L(X,Y) to Fpyxn.

15



Matrix Representations

Theorem 4 (From Handout). Let X,Y, Z be finite-dimensional
vector spaces over the same field F' with bases U,V,W respec-
tively. Let Se L(X,Y) and T € L(Y,Z). Then

Mth,V(T) : MtJZV,U(S) — Mth,U(T o S)

i.e. matrix multiplication corresponds via the matrix representa-
tion isomorphism to composition of linear transformations.

Proof. See handout. [ ]

Note that Mtz is a function from L(X,Y) to the space Fyxn
of m x n matrices, while Mtz (T') is an m x n matrix.

16



Matrix Representations

The theorem can be summarized by the following “Commutative
Diagram:”

S T
X — Y — A
crdy; ] ] erdy 1 erdyy
R"™ o R™ o R"
Mtzy, iy (S) Mtzyy,y (1)

We say the diagram commutes because you get the same answer
any way you go around the diagram (in directions allowed by the

arrows). The erd arrows go in both directions because crd is an
Isomorphism.

17



Change of Basis

Let X be a finite-dimensional vector space with basis V. If
T € L(X,X) it is customary to use the same basis in the domain
and range. In this case, Mtxy (1) denotes Mtxy y(T).

Question: If W is another basis for X, how are Mtxy(T) and
Mtxy (T) related?

v 5
cA -\ =) |
Koo % > A s
/)(
A R e
\a&; J \Qo_sf\s“) WERI N

18



Mth,W(id) : Mtxw(T) : Mth’V(id) Mth,W(id) . Mth’V(T O Zd)

Mth,V(id oT o1id)
— Mth(T)
and
Mth,W(id)-Mth,V(id) = Mth,V(id)
1 00 O O
L O 10 O O
O 00 .--- 01
5 R
NS cud gL

19



So this says that
Mtzy(T) = P~ Mtzy (T)P
for the invertible matrix
P = Mtxyyy(id)

that is the change of basis matrix.

On the other hand, if P is any invertible matrix, then P is also a
change of basis matrix for appropriate corresponding bases (see
handout).

20



Similarity
o wa«\\
Definition 1. Square matrices A and B are similar if

A=plBp

for some invertible matrix P.

21



Similarity

Theorem 5. Suppose that X is a finite-dimensional vector space.

1. If T € L(X,X) then any two matrix representations of T
are similar. That is, if U/ W are any two bases of X, then
Mtxy (T) and Mtxy (1) are similar.

2. Conversely, two similar matrices represent the same linear
transformation 1', relative to suitable bases. That is, given
similar matrices A, B with A = P~1BP and any basis U, there
is a basis W and T € L(X,X) such that

Mth(T)
Mtxw(T)
Mth’W(id)
Mth,U(id)

Lyos
||

v
[

22



Proof. See Handout on Diagonalization and Quadratic Forms.

L]



Eigenvalues and Eigenvectors

Here, we define eigenvalues and eigenvectors of a linear trans-
formation and show that )\ is an eigenvalue of T if and only if A\
IS an eigenvalue for some matrix representation of 7' if and only
if X is an eigenvalue for every matrix representation of 7.

Definition 2. Let X be a vector space and T € L(X,X). We
say that M\ is an eigenvalue of T' and v #+= 0 is an eigenvector
corresponding to A if T'(v) = M.

23



Eigenvalues and Eigenvectors

Theorem 6 (Theorem 4 in Handout). Let X be a finite-dimensional
vector space, and U a basis. Then X\ is an eigenvalue of T if and
only if A is an eigenvalue of Mtxy(T). v is an eigenvector of
T corresponding to X\ if and only if erdy(v) is an eigenvector of
Mtxy(T) corresponding to .

Proof. By the Commutative Diagram Theorem,
TW) =M < crdy(T(W)) = crdy(Av) = A CIO\Q( V)
& Mtxy(T)(erdy(v)) = A(erdy(v))

[ ]
A= \]\f\'\(‘%\}\(ﬂ’(x } * = Qr%(v\J

<_-:_> 7[\7&-'—“—- N % 24



Computing Eigenvalues and Eigenvectors

Suppose dimX = n; let I be the n x n identity matrix. Given
T € L(X,X), fix a basis U and let

A= Mtxy(T)
Find the eigenvalues of T by computing the eigenvalues of A:

i\i:‘oD < Ao- Av = v <~ (A_AI)U:O 'S;'\bf‘ Lo WAL \{A?D
<= (A — )\I) is not invertible
< det(A—-\)=0

25



We have the following facts:

[ If A - Rnxrn,
F(A) = det(A — A

is an nth degree polynomial in A with real coefficients; it is
called the characteristic polynomial of A.

e f has n roots in C, counting multiplicity:

\N\Q-\s \)\Q‘\Je—
FA) =(c1 =A)(e2—=A) - (cn = A) CL=cg Uk
where c1,...,cn € C are the eigenvalues; the c;'s are not
necessarily distinct. Notice that f(A) = 0 if and only if
A €{c1,...,cn}, SO the roots are the solutions of the equation

f(A) =0.

26



e the roots that are not real come in conjugate pairs:

f(a+bi) =0< f(a—0bi) =0

o if \= cj € R, there is a corresponding eigenvector in R".

o if \= C; ¢ R, the corresponding eigenvectors are in C™\ R™.



Diagonalization

Definition 3. Suppose X is a finite-dimensional vector space with
basis U. Given a linear transformation T € L(X,X), let

A — MtJZU(T)

We say that A can be diagonalized if there is a basis W for X
such that Mtxyw (T) is a diagonal matrix, that is,

27



A 0 O 0 0
Mtzy(T)=| 0 *2 9 90
O O O 0O A\

So

A can be diagonalized <= A is similar to a diagonal matrix
<~ A= P 1BP where B is diagonal

U

;\‘\. © - (&
o . ;

) n—'. k“
c ~——~ —

28



Suppose there is a basis W such that

A1 0 O -0 O
My =| T 20000
O 0 O --- 0 M
=> X, , Mo oue QL] ~Nodes o W\*x‘w Q_Y\ ond T\
Then the standard basis vectors of R™ are eigenvectors of Mtxy, (T).

AN 3&@ s
zj IS an eigenvector of T corresponding to \; <= crdy(z;) is

an eigenvector of Mtxy, (1) corresponding to A;.

Y
So an eigenvectorf(corresponding to Aj is wj, since crdy (w;) = e;,
the jth standard basis vector in R".

29
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Thus Mtxy (T) is diagonal if and only if W = {w1,...,wn} where
w; IS an eigenvector of 1" corresponding to >\j for each j.

Then the action of T' is clear: it stretches each basis element w;
by the factor \;.



Diagonalization

Theorem 7 (Thm. 6.7'). Let X be an n-dimensional vector
space, T € L(X,X), U any basis of X, and A = Mtxy(T). Then
the following are equivalent:

1. A can be diagonalized
2. there is a basis W for X consisting of eigenvectors of T

3. there is a basis V for R™ consisting of eigenvectors of A

Proof. Follows from Theorem 6.7 in de la Fuente and Theorem
4 from the Handout. [ ]
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Diagonalization
Theorem 8 (Thm. 6.8"). Let X be a vector space and T €

L(X,X).

1. If \q,..., A\m are distinct eigenvalues of T' with corresponding
eigenvectors v1,...,vm, then {v1,...,vm} is linearly indepen-
dent.

2. IfdimX = n and T' has n distinct eigenvalues, then X has
a basis consisting of eigenvectors of I'; consequently, if U is
any basis of X, then Mtxy;(T) is diagonalizable.

Proof. This is an adaptation of the proof of Theorem 6.8 in de
la Fuente. [ ]
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