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Section 5.3. Fixed Point Theorems: Brouwer’s and Kakutani’s

We have already studied fixed points for the very special case of contraction mappings.
Here we study them for general functions as well as for correspondences.

Definition 1 Let X be a nonempty set and f : X → X. A point x∗ ∈ X is a fixed point of
f if f(x∗) = x∗.

Aptly named, x∗ is a fixed point of f if it is “fixed” by the map f .

Examples:

1. Let X = R and f : R → R be given by f(x) = 2x. Then x = 0 is a fixed point of f

(and is the unique fixed point of f).

2. Let X = R and f : R → R be given by f(x) = x. Then every point in R is a fixed
point of f (in particular, fixed points need not be unique).

3. Let X = R and f : R → R be given by f(x) = x + 1. Then f has no fixed points.

4. Let X = [0, 2] and f : X → X be given by f(x) = 1
2
(x + 1). Then

f(x) =
1

2
(x + 1) = x

⇐⇒ x + 1 = 2x

⇐⇒ x = 1

So x = 1 is the unique fixed point of f . Notice that f is a contraction (why?), so
we already knew that f must have a unique fixed point on R from the Contraction
Mapping Theorem.

5. Let X = [0, 1
4
] ∪ [ 3

4
, 1] and f : X → X be given by f(x) = 1 − x. Then f has no fixed

points.

6. Let X = [−2, 2] and f : X → X be given by f(x) = 1
2
x2. Then f has two fixed points,

x = 0 and x = 2. If instead X ′ = (0, 2), then f : X ′ → X ′ but f has no fixed points
on X ′.

7. Let X = {1, 2, 3} and f : X → X be given by f(1) = 2, f(2) = 3, f(3) = 1 (so f is a
permutation of X). Then f has no fixed points.
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8. Let X = [0, 2] and f : X → X be given by

f(x) =

{

x + 1 if x ≤ 1
x− 1 if x > 1

Then f has no fixed points.

As the examples illustrate, fixed points need not exist, and if they do, they need not be
unique. What distinguishes between the different behavior in these examples? When can we
guarantee the existence of a fixed point? The Contraction Mapping Theorem gave us one
set of conditions, but these are extremely strong, too strong to be useful in many situations.
Also, in many cases we cannot guarantee that the mapping of interest is single-valued, so we
are also interested in more general questions regarding fixed points for correspondences.

We start with a simple one-dimensional result.

Theorem 2 Let X = [a, b] for a, b ∈ R with a < b and let f : X → X be continuous. Then

f has a fixed point.

Proof: Let g : [a, b] → R be given by

g(x) = f(x) − x

If either f(a) = a or f(b) = b, we’re done. So assume f(a) > a and f(b) < b. Then

g(a) = f(a) − a > 0

g(b) = f(b) − b < 0

g is continuous, so by the Intermediate Value Theorem, ∃x∗ ∈ (a, b) such that g(x∗) = 0,
that is, such that f(x∗) = x∗. See Figures 1 and 2.

This is a special case of a much more general and powerful result.

Theorem 3 (Thm. 3.2. Brouwer’s Fixed Point Theorem) Let X ⊆ Rn be nonempty,

compact, and convex, and let f : X → X be continuous. Then f has a fixed point.

We will not give a complete proof of the general version of Brouwer’s Fixed Point The-
orem. There are a variety of ways to prove this, but each requires more heavy machinery
than we can feasibly introduce here. Instead, we will give two different but fairly complete
sketches that will give you different intuitions for why this theorem is true.1

Proof (sketch) 1: Consider the case when the set X is the unit ball in Rn, i.e. X = B1[0] =
B = {x ∈ Rn : ‖x‖ ≤ 1}. This restriction to the domain B is essentially without loss of

1See J. Franklin, Methods of Mathematical Economics, for an elementary (but long) proof.
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generality. Let f : B → B be a continuous function. For this sketch of the proof, we need to
use the following fact. This fact is intuitive and not difficult to visualize, but is itself fairly
difficult to prove. Recall that ∂B denotes the boundary of B, so ∂B = {x ∈ Rn : ‖x‖ = 1}.

Fact: Let B be the unit ball in Rn. Then there is no continuous function h : B → ∂B such
that h(x′) = x′ for every x′ ∈ ∂B.

This fact says that there is no way to construct a continuous function mapping the unit
ball onto its boundary in a way that fixes every point on the boundary (such a mapping
is called a retraction). You can visualize this in two dimensions by thinking of the ball
constructed out of a thin disk made of a stretchable material (or Silly Putty, if you remember
that), and thinking of this mapping h corresponding to trying to rearrange and stretch the
disk, keeping the outside edge fixed, so that it becomes a ring, all without tearing it. This
is impossible, which the above result verifies.

Now to establish Brouwer’s theorem, suppose, by way of contradiction, that f has no fixed
points in B. Thus for every x ∈ B, x 6= f(x). Since x and its image f(x) are distinct points
in B for every x, we can carry out the following construction. For each x ∈ B, construct
the line segment originating at f(x) and going through x. Let g(x) denote the intersection
of this line segment with ∂B = {x ∈ B : ‖x‖ = 1}. See Figure 4 for an illustration. This
construction is well-defined (notice that it would not be if there were fixed points of f , as in
Figure 5), and gives a continuous function g : B → ∂B. Furthermore, notice that if x′ ∈ ∂B,
then x′ = g(x′). Again, see Figure 4. That is, g|∂B = id , with id denoting the identity
function. Since there are no such functions by the fact above, we have a contradiction.
Therefore there exists x∗ ∈ B such that f(x∗) = x∗, that is, f has a fixed point in B.

Proof (sketch) 2: For this sketch, we appeal to an important result due to Scarf that gives
an efficient algorithm to find approximate fixed points, that is, showing:

∀ε > 0 ∃x∗

ε ∈ X s.t. |f (x∗

ε) − x∗

ε| < ε

In turn this can be viewed as a computational version of an important combinatorial result
known as Sperner’s Lemma. Here is a sketch of the idea:

• Suppose X is n − 1 dimensional. Let X be the simplex

X =

{

p ∈ Rn
+ :

n
∑

`=1

p` = 1

}

• Triangulate X, i.e. divide X into a set of simplices such that the intersection of any
two simplices is either empty or a whole face of both. See Figure 6.

• Notice that for each vertex x in the triangulation, either f(x) = x, in which case we
are done, or there must exist ` such that f(x)` < x` (why?).

Then label each vertex in the triangulation by

L(x) = min {` : f(x)` < x`}
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• Each simplex in the triangulation has n vertices. A simplex is completely labeled if its
vertices carry each of the labels 1, . . . , n exactly once; it is almost completely labeled if
its vertices carry the labels 1, . . . , n− 1 with exactly one of these labels repeated. See
Figure 6.

• A simplex which is almost completely labeled has two “doors”, the faces opposite the
two vertices with repeated labels. The algorithm pivots from one simplex to another by
going in one door and alway leaving by the other door. The new simplex must either
be completely labeled, in which case the algorithm stops, or it is almost completely
labeled and the algorithm continues. See Figure 7.

• One can show that one can never visit the same simplex twice: if you did, there would
be a first simplex visited a second time, but then you had to enter it through a door,
and you previously used both doors, so some other simplex must be the first simplex
visited a second time, contradiction.

• One can show that one cannot exit through a face of the the large simplex. Since there
are only finitely many simplices, and you visit each one at most once, you must stop
after a finite number of steps at a completely labeled simplex.

• Completely labeled simplices are approximate fixed points:

– Fix ε > 0. Since X is compact and f is continuous, f is uniformly continuous,
so we can find a triangulation fine enough so that for every simplex σ in the
triangulation,

x, y ∈ σ ⇒ |x − y| <
ε

4n
and |f(x) − f(y)| <

ε

4n

– Suppose σ is completely labeled. Let its vertices be v1, . . . , vn, and assume without
loss of generality

L(v`) = `

Then

L(v1) = 1 ⇒ f(v1)1 < (v1)1

L(v2) = 2 6= 1 ⇒ f(v2)1 ≥ (v2)1

⇒ ∃y1 ∈ σ s.t. f(y1)1 = (y1)1

L(v2) = 2 ⇒ f(v2)2 < (v2)2

L(v3) = 3 6= 2 ⇒ f(v3)2 ≥ (v3)2

⇒ ∃y2 ∈ σ s.t. f(y2)2 = (y2)2

...

L(vn−1) = n − 1 ⇒ f(vn−1)n−1 < (vn−1)n−1

L(vn) = n 6= n − 1 ⇒ f(vn)n−1 ≥ (vn)n−1

⇒ ∃yn−1 ∈ σ s.t. f(yn−1)n−1 = (yn−1)n−1

4



Given any x ∈ σ and any ` ∈ {1, . . . , n − 1},

|f(x)` − x`| ≤ |f(x)` − f(y`)`| + |f(y`)` − (y`)`| + |(y`)` − x`|

≤
ε

4n
+ 0 +

ε

4n

=
ε

2n

|f(x)n − xn| =

∣

∣

∣

∣

∣

(

1 −
n−1
∑

`=1

f(x)`

)

−

(

1 −
n−1
∑

`=1

x`

)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n−1
∑

`=1

(x` − f(x)`)

∣

∣

∣

∣

∣

≤
n−1
∑

`=1

|f(x)` − x`|

≤ (n − 1)
ε

2n

<
ε

2
So |f(x) − x| ≤ ‖f(x) − x‖1

≤ (L − 1)
ε

2n
+

ε

2

<
ε

2
+

ε

2
= ε

Next we turn to correspondences. We start with the notion of fixed point for a corre-
spondence.

Definition 4 Let X be nonempty and Ψ : X → 2X be a correspondence. A point x∗ ∈ X

is a fixed point of Ψ if x∗ ∈ Ψ(x∗).

Note here that we do not require Ψ(x∗) = {x∗}, that is Ψ need not be single-valued at
x∗. So x∗ can be a fixed point of Ψ but there may be other elements of Ψ(x∗) different from
x∗.

Examples:

1. Let X = [0, 4] and Ψ : X → 2X be given by

Ψ(x) =











[x + 1, x + 2] if x < 2
[0, 4] if x = 2

[x− 2, x − 1] if x > 2

Then x = 2 is the unique fixed point of Ψ.
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2. Let X = [0, 4] and Ψ : X → 2X be given by

Ψ(x) =











[x + 1, x + 2] if x < 2
[0, 1] ∪ [3, 4] if x = 2
[x− 2, x − 1] if x > 2

Then Ψ has no fixed points.

When does a correspondence have a fixed point? Since a function is a special case of
a correspondence, it is clear that we can find counterexamples without at least some form
of continuity such as upper hemicontinuity, or without compactness and convexity of the
domain X. As the examples above illustrate, however some more structure is required (see
Figures 8 and 9).

Theorem 5 (Thm. 3.4’. Kakutani’s Fixed Point Theorem) Let X ⊂ Rn be a non-

empty, compact, convex set and Ψ : X → 2X be an upper hemi-continuous correspondence

with non-empty, convex, compact values. Then Ψ has a fixed point in X.

Proof: (sketch) Here, the idea is to use Brouwer’s theorem after appropriately approxi-
mating the correspondence with a function. The catch is that there won’t necessarily exist a
continuous selection from Ψ, that is, a continuous function f : X → X such that f(x) ∈ Ψ(x)
for every x ∈ X. If such a function existed, then by applying Brouwer to f we would have
a fixed point of Ψ (because if ∃x∗ ∈ X such that x∗ = f(x∗), then x∗ = f(x∗) ∈ Ψ(x∗)).
Figure 10 gives a simple example of an uhc correspondence Ψ with convex, compact values
for which no such continuous selection exists, however.

Instead, we look for a weaker type of approximation. Let X ⊂ Rn be a non-empty,
compact, convex set, and let Ψ : X → 2X be an uhc correspondence with non-empty,
compact, convex values. For every ε > 0, define the ε ball about graph Ψ to be

Bε( graph Ψ) =

{

z ∈ X × X : d(z, graph Ψ) = inf
(x,y)∈ graph Ψ

d(z, (x, y)) < ε

}

Here d denotes the ordinary Euclidean distance. Since Ψ is uhc and convex-valued, for every
ε > 0 there exists a continuous function fε : X → X such that graph fε ⊆ Bε( graphΨ).2

See Figure 11 for an illustration of this construction. The ε ball about the graph of Ψ is the
area between the dashed lines, which contains the graph of the continuous function f .

Now by letting ε → 0, this means that we can find a sequence of continuous functions
{fn} such that graph fn ⊆ B 1

n

( graph Ψ) for each n. By Brouwer’s Fixed Point Theorem,
each function fn has a fixed point x̂n ∈ X, and

(x̂n, x̂n) = (x̂n, fn(x̂n)) ∈ graph fn ⊆ B 1

n

( graph Ψ) for each n

2This result is Celina’s approximation theorem (for example, see Hildenbrand and Kirman, Equilibrium

Analysis for a reference).
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So for each n there exists (xn, yn) ∈ graph Ψ such that

d(x̂n, xn) <
1

n
and d(x̂n, yn) <

1

n

Since X is compact, {x̂n} has a convergent subsequence {x̂nk
}, with x̂nk

→ x̂ ∈ X. Then
xnk

→ x̂ and ynk
→ x̂. Since Ψ is uhc and closed-valued, it has closed graph, so

(x̂, x̂) ∈ graph Ψ. Thus x̂ ∈ Ψ(x̂), that is, x̂ is a fixed point of Ψ.

Section 6.1(d): Separating Hyperplane Theorems

Convex sets have a number of important geometric and analytic properties. Some of the
most important results in convex analysis are those dealing with supporting and separating
hyperplanes. There are a number of different results along these lines. We give several here,
starting with the most common and widely used version.

Theorem 6 (1.26, Separating Hyperplane Theorem) Let A, B ⊆ Rn be nonempty,

disjoint convex sets. Then there exists a nonzero vector p ∈ Rn such that

p · a ≤ p · b ∀a ∈ A, b ∈ B

We will prove a special case of this result, from which you can derive the general result.

Theorem 7 Let Y ⊆ Rn be a nonempty convex set and x 6∈ Y . Then there exists a nonzero

vector p ∈ Rn such that

p · x ≤ p · y ∀y ∈ Y

Proof: We sketch the proof in the special case that Y is compact. We will see that in this
case we actually get a stronger conclusion:

∃p ∈ Rn, p 6= 0 s.t. p · x < p · y ∀y ∈ Y

See the following discussion and theorem as well.

Choose y0 ∈ Y such that |y0 −x| = inf{|y−x| : y ∈ Y }; such a point exists because Y is
compact, so the distance function g(y) = |y − x| assumes its minimum on Y . Since x 6∈ Y ,
x 6= y0, so y0 − x 6= 0. Let p = y0 − x. The set

H = {z ∈ Rn : p · z = p · y0}

is the hyperplane perpendicular to p through y0. See Figure 14. Then

p · y0 = (y0 − x) · y0

= (y0 − x) · (y0 − x + x)

= (y0 − x) · (y0 − x) + (y0 − x) · x

= |y0 − x|2 + p · x

> p · x
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We claim that
y ∈ Y ⇒ p · y ≥ p · y0

If not, suppose there exists y ∈ Y such that p · y < p · y0. Given α ∈ (0, 1), let

wα = αy + (1 − α)y0

Since Y is convex, wα ∈ Y . Then for α sufficiently close to zero,

|x − wα|
2 = |x− αy − (1 − α)y0|

2

= |x− y0 + α(y0 − y)|2

= | − p + α(y0 − y)|2

= |p|2 − 2αp · (y0 − y) + α2|y0 − y|2

= |p|2 + α
(

−2p · (y0 − y) + α|y0 − y|2
)

< |p|2 for α close to 0, as p · y0 > p · y

= |y0 − x|2

Thus for α sufficiently close to zero,

|wα − x| < |y0 − x|

which implies y0 is not the closest point in Y to x, contradiction.

The general version of the Separating Hyperplane Theorem can be derived from this
special case by noting that if A ∩ B = ∅, then 0 6∈ A − B = {a − b : a ∈ A, b ∈ B}.

As we noted in the proof above, in the case of separating a point {x} from a set Y we
were able to reach a stronger conclusion. In some applications it will be useful to have a
stronger result that guarantees this strict separation. Stronger assumptions are required for
this, as Figure 15 illustrates. Here is one such result.

Theorem 8 (Strict Separating Hyperplane Theorem) Let A, B ⊆ Rn be nonempty,

disjoint, closed, convex sets. Then there exists a nonzero vector p ∈ Rn such that

p · a < p · b ∀a ∈ A, b ∈ B
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Figure 2: x is a fixed point of f iff g(x) = f(x) − x = 0.
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Figure 3: A discontinuous function f : [a, b] → [a, b] with no fixed point.
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Figure 4: Construction of the function g.
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Figure 5: If f has a fixed point x, the construction of g(x) is not possible.
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Figure 6: A triangulation, with completely labeled and almost completely labeled simplexes
identified.
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Figure 7: An illustration of Scarf’s algorithm to find a completely labeled simplex.
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Figure 8: The correspondence Ψ has a fixed point at x = 2.
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Figure 9: The correspondence Ψ is upper hemicontinuous but has no fixed point on [0, 4].
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Figure 10: Ψ is uhc with compact, convex values, but has no continuous selection, that is,
there is no continuous function f with f(x) ∈ Ψ(x) for every x.
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Figure 11: A continuous selection from the ε-ball about the graph of Ψ.
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Figure 12: Separating Hyperplane Theorem
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Figure 13: There is no hyperplane separating A and B.
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Figure 14: Separating Y from x 6∈ Y .
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Figure 15: The sets A and B are convex and disjoint, but cannot be strictly separated.
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