
Economics 204 Summer/Fall 2022
Lecture 7–Tuesday August 2, 2022

Section 2.9. Connected Sets

Definition 1 Two sets A, B in a metric space are separated if

Ā ∩ B = A ∩ B̄ = ∅

A set in a metric space is connected if it cannot be written as the union of two nonempty
separated sets.

Remark: In other texts, you will see the following equivalent definition: A set Y in a metric
space X is connected if there do not exist open sets A and B such that A∩B = ∅, Y ⊆ A∪B

and A ∩ Y 6= ∅ and B ∩ Y 6= ∅.

Example: [0, 1) and [1, 2] are disjoint but not separated:

[0, 1) ∩ [1, 2] = [0, 1] ∩ [1, 2] = {1} 6= ∅

[0, 1) and (1, 2] are separated:

[0, 1) ∩ (1, 2] = [0, 1] ∩ (1, 2] = ∅

[0, 1) ∩ (1, 2] = [0, 1) ∩ [1, 2] = ∅

Note that d([0, 1), (1, 2]) = 0 even though the sets are separated. Note also that separation
does not require that Ā ∩ B̄ = ∅. For example,

[0, 1) ∪ (1, 2]

is not connected, since [0, 1) and (1, 2] are separated.

In R, connected sets are easy to characterize: they are simply intervals.

Theorem 2 (Thm. 9.2) A set S ⊆ E1 of real numbers is connected if and only if it is an
interval, i.e. if x, y ∈ S and z ∈ (x, y), then z ∈ S.

Proof: First, we show that if S is connected then S is an interval. We do this by proving
the contrapositive: if S is not an interval, then it is not connected. If S is not an interval,
find

x, y ∈ S and z 6∈ S s.t. x < z < y

Let
A = S ∩ (−∞, z), B = S ∩ (z,∞)
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Then

Ā ∩ B ⊆ (−∞, z) ∩ (z,∞) = (−∞, z] ∩ (z,∞) = ∅

A ∩ B̄ ⊆ (−∞, z) ∩ (z,∞) = (−∞, z) ∩ [z,∞) = ∅

A ∪ B = (S ∩ (−∞, z)) ∪ (S ∩ (z,∞))

= S \ {z}

= S

x ∈ A, so A 6= ∅

y ∈ B, so B 6= ∅

So S is not connected. We have shown that if S is not an interval, then S is not connected;
therefore, if S is connected, then S is an interval.

Now, we need to show that if S is an interval, then it is connected. This is much like the
proof of the Intermediate Value Theorem. See de la Fuente for the details.

Notice that this result is only valid in R. For example, connected sets in Rn need not be
intervals, or even convex.

In a general metric space, continuity will preserve connectedness. You can view this
result as a generalization of the Intermediate Value Theorem, to which we return below.

Theorem 3 (Thm. 9.3) Let X be a metric space and f : X → Y be continuous. If C is a
connected subset of X, then f(C) is connected.

Proof: We prove the contrapositive: if f(C) is not connected, then C is not connected.
Suppose f(C) is not connected. Then there exist P, Q such that P 6= ∅ 6= Q, f(C) = P ∪Q,
and

P̄ ∩ Q = P ∩ Q̄ = ∅

Let
A = f−1(P ) ∩ C and B = f−1(Q) ∩ C

(See Figure 1.)

Then

A ∪ B =
(

f−1(P ) ∩ C
)

∪
(

f−1(Q) ∩ C
)

=
(

f−1(P ) ∪ f−1(Q)
)

∩ C

= f−1(P ∪ Q) ∩ C

= f−1(f(C)) ∩ C

= C

Also, A = f−1(P ) ∩ C 6= ∅ and B = f−1(Q) ∩ C 6= ∅. Then note

A = f−1(P ) ∩ C ⊆ f−1(P ) ⊆ f−1
(

P̄
)
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Since f is continuous, f−1(P̄ ) is closed, so

Ā ⊆ f−1
(

P̄
)

Similarly,
B = f−1(Q) ∩ C ⊆ f−1(Q) ⊆ f−1

(

Q̄
)

and f−1(Q̄) is closed, so

B̄ ⊆ f−1
(

Q̄
)

Then

Ā ∩ B ⊆ f−1
(

P̄
)

∩ f−1(Q)

= f−1
(

P̄ ∩ Q
)

= f−1(∅)

= ∅

and similarly

A ∩ B̄ ⊆ f−1(P ) ∩ f−1
(

Q̄
)

= f−1
(

P ∩ Q̄
)

= f−1(∅)

= ∅

So C is not connected. We have shown that f(C) not connected implies C not connected;
therefore, C connected implies f(C) connected.

As noted above, this is essentially the same principle as the Intermediate Value Theorem;
the stronger properties of R yield a stronger result. This observation lets us give a third,
and slickest, proof of the Intermediate Value Theorem. It is short because a substantial part
of the argument was incorporated into the proof that C ⊆ R is connected if and only if C is
an interval, and the proof that if C is connected, then f(C) is connected. Here’s the proof:

Corollary 4 (Intermediate Value Theorem) If f : [a, b] → R is continuous, and f(a) <

d < f(b), then there exists c ∈ (a, b) such that f(c) = d.

Proof: Since [a, b] is an interval, it is connected. So f([a, b]) is connected, hence f([a, b]) is
an interval. f(a) ∈ f([a, b]), and f(b) ∈ f([a, b]), and d ∈ [f(a), f(b)]; since f([a, b]) is an
interval, d ∈ f([a, b]), i.e. there exists c ∈ [a, b] such that f(c) = d. Since f(a) < d < f(b),
c 6= a, c 6= b, so c ∈ (a, b).

Note: Read on your own the material on arcwise-connectedness. Please note the discussion
in the Corrections handout.

Section 2.10: Read this on your own.
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Section 2.11: Continuity of Correspondences in En

Definition 5 A correspondence Ψ : X → 2Y from X to Y is a function from X to 2Y , that
is, Ψ(x) ⊆ Y for every x ∈ X.

Examples:

1. Let u : Rn

+ → R be a continuous utility function, y > 0 and p ∈ Rn

++, that is, pi > 0
for each i. Define Ψ : Rn

++ × R++ → 2R
n

+ by

Ψ(p, y) = arg maxu(x)

s.t. x ≥ 0

p · x ≤ y

Ψ is the demand correspondence associated with the utility function u; typically Ψ(p, y)
is multi-valued.1

2. Let f : X → Y be a function. Define Ψ : X → 2Y by Ψ(x) = {f(x)} for each x ∈ X.
That is, we can consider a function to be the special case of a correspondence that is
single-valued for each x.

Remark 6 See Item 1 on the Corrections handout. de la Fuente gives two definitions of a
correspondence on page 23 that are not equivalent. The first agrees with the definition we
just gave, while the second requires that for all x ∈ X, Ψ(x) 6= ∅. In asserting the equivalence
of the two definitions, he seems to believe, erroneously, that ∅ 6∈ 2Y . In the literature, you
might find the term correspondence defined in both ways, so you should check what any
given author means by the term. In these notes, we do not impose the requirement that
Ψ(x) 6= ∅. If Ψ(x) 6= ∅ for all x, we will say that Ψ is nonempty-valued.

We want to talk about continuity of correspondences in a way analogous to continuity
of functions. We will discuss three main notions of continuity for correspondences, each of
which can be motivated by thinking about what continuity means for a function f : Rn → R.

One way a function may be discontinuous at a point x0 is that it “jumps downward at
the limit:”

∃xn → x0 s.t. f(x0) < lim inf f(xn)

It could also “jump upward at the limit:”

∃xn → x0 s.t. f(x0) > lim supf(xn)

1The notation “arg max ” here stands for the set of solutions to the given maximization problem (the
argument that maximizes the given function over the given constraint set). Thus here, setting B(p, y) =
{x ∈ R

n : x ≥ 0, p · x ≤ y}, Ψ(p, y) = {x∗ ∈ B(p, y) : u(x∗) ≥ u(x) ∀x ∈ B(p, y)}.
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In either case, it doesn’t matter whether the sequence xn approaches x0 from the left or the
right (or both). See Figures 2 and 3.

What should it mean for a set to “jump down” at the limit x0? It should mean the set
suddenly gets smaller – it “implodes in the limit” – that is, there is a sequence xn → x0 and
points yn ∈ Ψ(xn) that are far from every point of Ψ(x0) as n → ∞. (See Figure 4.)

Similarly, what should it mean for a set to “jump up” at the limit? This should mean
that that the set suddenly gets bigger – it “explodes in the limit” – that is, there is a point
y in Ψ(x0) and a sequence xn → x0 such that y is far from every point of Ψ(xn) as n → ∞.2

(See Figure 5.)

The first two notions of continuity below formalize this intuition.3

Definition 7 Let X ⊆ En, Y ⊆ Em, and Ψ : X → 2Y .

• Ψ is upper hemicontinuous (uhc) at x0 ∈ X if, for every open set V ⊇ Ψ(x0), there is
an open set U with x0 ∈ U such that

Ψ(x) ⊆ V for every x ∈ U ∩ X

• Ψ is lower hemicontinuous (lhc) at x0 ∈ X if, for every open set V such that Ψ(x0)∩V 6=
∅, there is an open set U with x0 ∈ U such that

Ψ(x) ∩ V 6= ∅ for every x ∈ U ∩ X

• Ψ is continuous at x0 ∈ X if it is both uhc and lhc at x0.

• Ψ is upper hemicontinuous (respectively lower hemicontinuous, continuous) if it is uhc
(respectively lhc, continuous) at every x ∈ X.

Upper hemicontinuity reflects the requirement that Ψ doesn’t “implode in the limit” at
x0; lower hemicontinuity reflects the requirement that Ψ doesn’t “explode in the limit” at
x0. See Figures 4 and 5 for an illustration.

Note that the definition of lower hemicontinuity does not just replace Ψ(x0) ⊆ V in the
definition of upper hemicontinuity with V ⊆ Ψ(x0); indeed, we will be very interested in

2In de la Fuente, this intuition is reversed. He uses the terms “explode” and “implode,” but not “at the
limit.” For him, a set explodes if it suddenly gets bigger, which agrees with our use; however, instead of
looking at whether the set explodes at the limit x0, he looks instead at whether the set explodes as you move
slightly away from the limit x0, which is equivalent to imploding at the limit. You may see this alternative
intuition in other places as well. Figure out whether one or the other helps you to understand and remember
the concepts and go with that.

3de la Fuente defines correspondences only with domain equalling a Euclidean space. In various appli-
cations we will be interested in correspondences defined on subsets of Euclidean space, so we modify the
definitions in de la Fuente to allow for this.
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correspondences in which Ψ(x) has empty interior, so there will often be no open sets V such
that V ⊆ Ψ(x0).

Notice also that upper and lower hemicontinuity are not nested: a correspondence can
be upper hemicontinuous but not lower hemicontinuous, or lower hemicontinuous but not
upper hemicontinuous.

An alternative notion of continuity looks instead at properties of the graph of the corre-
spondence. The graph of a correspondence Ψ : X → 2Y is the set

graph Ψ = {(x, y) ∈ X × Y : y ∈ Ψ(x)}

Recall that a function f : Rn → R is continuous if and only if whenever xn → x, f(xn) →
f(x). We can translate this into a statement about its graph. Suppose {(xn, yn)} ⊆ graph f

and (xn, yn) → (x, y). Since f is a function, (xn, yn) ∈ graph f ⇐⇒ yn = f(xn). Then
if f is continuous, y = lim yn = lim f(xn) = f(x), that is, (x, y) ∈ graph f . So if f is
continuous, each convergent sequence {(xn, yn)} in graph f converges to a point (x, y) in
graph f , that is, graph f is closed.

This observation suggests the third main notion of continuity for correspondences.

Definition 8 Let X ⊆ En, Y ⊆ Em. A correspondence Ψ : X → 2Y has closed graph if its
graph is a closed subset of X ×Y , that is, if for any sequences {xn} ⊆ X and {yn} ⊆ Y such
that xn → x ∈ X, yn → y ∈ Y and yn ∈ Ψ(xn) for each n, then y ∈ Ψ(x).

Example: Consider the correspondence

Ψ(x) =

{

{

1

x

}

if x ∈ (0, 1]

{0} if x = 0

See Figure 6. Let V = (−0.1, 0.1). Then Ψ(0) = {0} ⊂ V , but no matter how close x is to
0,

Ψ(x) =
{

1

x

}

6⊆ V

so Ψ is not uhc at 0. However, note that Ψ has closed graph.

Example: Consider the correspondence

Ψ(x) =

{

{

1

x

}

if x ∈ (0, 1]

R+ if x = 0

See Figure 7. Ψ(0) = [0,∞), and Ψ(x) ⊆ Ψ(0) for every x ∈ [0, 1]. So if V ⊇ Ψ(0) then
V ⊇ Ψ(x) for all x. Thus, Ψ is uhc, and has closed graph.

For a function, upper hemicontinuity and continuity coincide; similarly, lower hemicon-
tinuity and continuity coincide.
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Theorem 9 Let X ⊆ En, Y ⊆ Em and f : X → Y . Let Ψ : X → 2Y be defined by
Ψ(x) = {f(x)} for all x ∈ X. Then Ψ is uhc if and only if f is continuous.

Proof: Suppose Ψ is uhc. We consider the metric spaces (X, d) and (Y, d), where d is the
Euclidean metric. Fix V open in Y . Then

f−1(V ) = {x ∈ X : f(x) ∈ V }

= {x ∈ X : Ψ(x) ⊆ V }

Thus, f is continuous if and only if f−1(V ) is open in X for each open V in Y , if and only
if {x ∈ X : Ψ(x) ⊆ V } is open in X for each open V in Y , if and only if Ψ is uhc (as an
exercise, think through why this last equivalence holds).

For a general correspondence, these notions are not nested: a closed graph correspondence
need not be uhc, as the first example above illustrates, and conversely an uhc correspondence
need not have closed graph, or even have closed values.

Definition 10 A correspondence Ψ : X → 2Y is called closed-valued if Ψ(x) is a closed
subset of Y for all x; Ψ is called compact-valued if Ψ(x) is compact for all x.

For closed-valued correspondences these concepts can be more tightly connected. A
closed-valued and upper hemicontinuous correspondence must have closed graph. For a
closed-valued correspondence with a compact range, upper hemicontinuity is equivalent to
closed graph.

Theorem 11 (Not in de la Fuente) Suppose X ⊆ En and Y ⊆ Em, and Ψ : X → 2Y .

(i) If Ψ is closed-valued and uhc, then Ψ has closed graph.

(ii) If Ψ has closed graph and there is an open set W with x0 ∈ W and a compact set Z

such that x ∈ W ∩ X ⇒ Ψ(x) ⊆ Z, then Ψ is uhc at x0.

(iii) If Y is compact, then Ψ has closed graph ⇐⇒ Ψ is closed-valued and uhc.

Proof: (i) Suppose Ψ is closed-valued and uhc. If Ψ does not have closed graph, we can
find a sequence (xn, yn) → (x0, y0), where (xn, yn) lies in the graph of Ψ (so yn ∈ Ψ(xn)) but
(x0, y0) does not lie in the graph of Ψ (so y0 6∈ Ψ(x0)). Since Ψ is closed-valued, Ψ(x0) is
closed. Since y0 6∈ Ψ(x0), there is some ε > 0 such that

Ψ(x0) ∩ B2ε(y0) = ∅

so
Ψ(x0) ⊆ Em \ Bε[y0]
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Let V = Em \ Bε[y0]. Then V is open, and Ψ(x0) ⊆ V . Since Ψ is uhc, there is an open set
U with x0 ∈ U such that

x ∈ U ∩ X ⇒ Ψ(x) ⊆ V

Since (xn, yn) → (x0, y0), xn ∈ U for n sufficiently large, so

yn ∈ Ψ(xn) ⊆ V

Thus for n sufficiently large, ‖yn − y0‖ ≥ ε, which implies that yn 6→ y0, and (xn, yn) 6→
(x0, y0), a contradiction. Thus Ψ is closed-graph.

(ii) Now, suppose Ψ has closed graph and there is an open set W with x0 ∈ W and a
compact set Z such that

x ∈ W ∩ X ⇒ Ψ(x) ⊆ Z

Since Ψ has closed graph, it is closed-valued. Let V be any open set such that V ⊇ Ψ(x0).
We need to show there exists an open set U with x0 ∈ U such that

x ∈ U ∩ X ⇒ Ψ(x) ⊆ V

If not, we can find a sequence xn → x0 and yn ∈ Ψ(xn) such that yn 6∈ V ∀n. Since xn → x0,
xn ∈ W ∩X for all n sufficiently large, and thus Ψ(xn) ⊆ Z for n sufficiently large. Since Z is
compact, we can find a convergent subsequence ynk

→ y′. Then (xnk
, ynk

) → (x0, y
′). Since

Ψ has closed graph, y′ ∈ Ψ(x0), so y′ ∈ V . Since V is open, ynk
∈ V for all k sufficiently

large, a contradiction. Thus, Ψ is uhc at x0.

(iii) Follows from (i) and (ii).

Upper and lower hemicontinuity can be given sequential characterizations that are useful
in applications.

Theorem 12 (Thm. 11.2) Suppose X ⊆ En and Y ⊆ Em. A compact-valued correspon-
dence Ψ : X → 2Y is uhc at x0 ∈ X if and only if, for every sequence {xn} ⊆ X with
xn → x0 and every sequence {yn} such that yn ∈ Ψ(xn) for each n, there is a convergent
subsequence {ynk

} such that lim ynk
∈ Ψ(x0).

Proof: See de la Fuente.

Note that this characterization of upper hemicontinuity requires the correspondence to
have compact values.

Theorem 13 (Thm. 11.3) A correspondence Ψ : X → 2Y is lhc at x0 ∈ X if and only if,
for every sequence {xn} ⊆ X with xn → x0, and every y0 ∈ Ψ(x0), there exists a companion
sequence {yn} with yn ∈ Ψ(xn) for each n such that yn → y0.

Proof: See de la Fuente.
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Figure 1: Continuity preserves connectedness: if f is continuous and C is connected, then
f(C) is connected. The picture gives the idea behind the proof.
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Figure 2: The function f “jumps down” in the limit at x0.
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Figure 3: The function f “jumps up” in the limit at x0.
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Figure 4: The correspondence Ψ “implodes in the limit” at x0. Ψ is not upper hemicontinuous
at x0.
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Figure 5: The correspondence Ψ “explodes in the limit” at x0. Ψ is not lower hemicontinuous
at x0.
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Figure 6: A correspondence that has closed graph but is not upper hemicontinuous.
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Figure 7: By changing the value of 0, now the correspondence is upper hemicontinuous, and
also has closed graph.
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Figure 8: The correspondence Ψ is neither upper hemicontinuous nor lower hemicontinuous
(why?).
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