Econ 204 – Problem Set 1¹

Due Friday July 29, 2022

- 1. Use induction to prove the following:
 - (a) For every $r \in \mathbb{N}$ and $x \in [-1, \infty)$, $(1+x)^r \ge 1 + rx$.
 - (b) $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ for all $n \in \mathbb{N}$.
- 2. Prove the following statements:
 - (a) Let X an infinite set. Prove that there exists $A \subseteq X$ such that A is countable.
 - (b) Show that if X is an infinite set, then there is an injection $r : \mathbb{N} \to X$. (Recall from lecture 2 this implies $|\mathbb{N}| \leq |X|$, thus the cardinality of the natural numbers N is less than or equal to the cardinality of any infinite set.)
- 3. In the following examples, show that the sets A and B are numerically equivalent by finding a specific bijection between the two.
 - (a) A = [0, 1], B = [10, 20]
 - (b) A = [0, 1], B = [0, 1)
 - (c) $A = (-1, 1), B = \mathbb{R}$
- 4. In this exercise we will practice working with sets whose elements are sets as well. For this, we will need the following definition:

Sigma-Algebra: Let Ω be a set and $\mathcal{F} \subseteq 2^{\Omega}$ be a collection of subsets of Ω . We say that \mathcal{F} is a sigma-algebra if the following properties hold:

- $\Omega \in \mathcal{F}$
- If $A \in \mathcal{F}$, then $A^C \in \mathcal{F}$.
- If $\{A_n\}_{n\in\mathbb{N}}$ is a countable collection of sets such that $\forall n\in\mathbb{N}\ A_n\in\mathcal{F}$, then $\cup_{n\in\mathbb{N}}A_n\in\mathcal{F}$.
- (a) Prove that if \mathcal{F} is a sigma-algebra and $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.
- (b) Prove that if \mathcal{F} is a sigma-algebra, then $\emptyset \in \mathcal{F}$
- (c) Prove that $\{\emptyset, \Omega\}$ is a sigma-algebra. Argue that this is the smallest sigma-algebra over the set Ω .
- (d) Prove that 2^{Ω} is a sigma-algebra. Argue that this is the largest sigma-algebra over the set Ω .
- (e) Prove that if $\mathcal{F}_1, \mathcal{F}_2$ are sigma-algebras, then $\mathcal{F}_1 \cap \mathcal{F}_2$ is a sigma-algebra.
- (f) Prove that if $\{\mathcal{F}_a\}_{a\in\mathcal{A}}$ is a collection of sigma-algebras, then $\cap_{a\in\mathcal{A}}\mathcal{F}$ is a sigma-algebra. (Note that we have made no restriction on the set \mathcal{A} .)
- (g) Prove or provide a counterexample to the following statement: If \mathcal{F}_1 , \mathcal{F}_2 are sigma-algebras, then $\mathcal{F}_1 \cup \mathcal{F}_2$ is a sigma-algebra.

¹In case of any problems with the solution to the exercises please email brunosmaniotto@berkeley.edu

- (h) Let $\Omega = \{1, 2, 3\}$. List all the possible sigma-algebras over Ω . (There are surprisingly few).
- 5. In this exercise we will practice working with unions and intersections of sets. Let Ω be a set $\{A_n\}_{n\in\mathbb{N}}$ be a countable collection of subsets of Ω . Define:

$$\lim \sup(A_n) = \bigcap_{m \ge 1} \bigcup_{k \ge n} A_k$$
$$\lim \inf(A_n) = \bigcup_{m \ge 1} \bigcap_{k \ge n} A_k$$

(a) Show that:

$$\lim \sup(A_n) = \{x \in \Omega \mid \forall m \in \mathbb{N} \exists k \ge m \in \mathbb{N} \ x \in A_k\}$$
$$\lim \inf(A_n) = \{x \in \Omega \mid \exists m \in \mathbb{N} \forall k \ge m \in \mathbb{N} \ x \in A_k\}$$

Argue that $\limsup(A_n)$ is the set of points that appear infinitely often in the sequence of sets $\{A_n\}_{n\in\mathbb{N}}$, and $\liminf(A_n)$ is the set of points that are "eventually" in the sequence of sets $\{A_n\}_{n\in\mathbb{N}}$. (You don't have to argue this formally, I just want you to practice developing an intuitive understanding for the definition of sets using symbols).

- (b) Show that $\liminf (A_n) \subseteq \limsup (A_n)$
- (c) Find an example of $\{A_n\}_{n\in\mathbb{N}}$ such that $\limsup(A_n)\not\subseteq \liminf(A_n)$
- (d) Find an example of $\{A_n\}_{n\in\mathbb{N}}$ such that $\forall k\in\mathbb{N}\ A_k\subset\limsup(A_n)$ and $\liminf(A_n)=\varnothing$
- (e) Suppose that $\{A_n\}_{n\in\mathbb{N}}$ is such that $\forall n\in\mathbb{N}\ A_n\subseteq A_{n+1}$. Prove that $\liminf(A_n)=\lim\sup(A_n)$
- (f) Show that $\liminf (A_n) = (\limsup (A_n^C))^C$
- (g) Let \mathcal{F} be a sigma-algebra and $\{A_n\}_{n\in\mathbb{N}}$ be such that $\forall n\in\mathbb{N}A_n\in\mathcal{F}$. Show that $\liminf(A_n), \limsup(A_n)\in\mathcal{F}$. (See Problem 4 for the definition of a sigma-algebra.)
- 6. Let $f:[a,b] \to \mathbb{R}$. The set $P = \{x_0, x_1, \ldots, x_n\}$ is called a partition for [a,b], if $a = x_0 < x_1 < \ldots < x_n = b$. Define $V(f;P) := \sum_{j=1}^n |f(x_j) f(x_{j-1})|$. The variation of f on [a,b] is defined as

$$V(f;[a,b]) := \sup \left\{ V(f;P) : P \text{ is a partition for } [a,b] \right\}. \tag{1}$$

When V(f; [a, b]) is finite, we say that f is of bounded variation on [a, b].

- (a) Show that the class of functions of bounded variation on [a, b] is closed under addition. That is if f and g have bounded variation on [a, b], then f + g also has bounded variation on [a, b].
- (b) Show that if f is of bounded variation on [a,b] and $a \leq c \leq b$, then

$$V(f; [a, b]) = V(f; [a, c]) + V(f; [c, b]).$$
(2)