Econ 204 – Problem Set 3^1

Due 11:59PM Friday August 5, 2022

1. Let (X, d) be a metric space. Given a subset $Y \subseteq X$, we define

$$Y^{\varepsilon} = \{ x \in X \mid d(x, Y) < \varepsilon \}$$

Let $K \subseteq X$ be compact and A an open set such that $K \subseteq A$. Show that there exists $\varepsilon > 0$ such that $K^{\varepsilon} \subseteq A$.

2. Let (X, d) be a metric space and $f : X \to \mathbb{R}$ be bounded. Given M > 0, define $f_M : X \to \mathbb{R}$ by :

$$f_M(x) = \inf_{y \in X} \{f(y) + Md(x, y)\}$$

Show that:

- (a) $\forall x \in X \ f_M(x) \le f(x)$
- (b) Show that f_M is M-Lipschitz
- (c) Show that if f is Lipschitz and the lipschitz constant of f , M_f , is less or equal than M, then $f_M = f$
- (d) Show that, given $x \in X$ and M < M', we have that $f_M(x) \leq f_{M'}(x)$.
- (e) Show that when $M \to \infty$, then $f_M(x) \to f(x)$ in every point $x \in X$ such that f is continuous.
- (f) Show that if f is continuous and X is compact,

$$\lim_{M \to \infty} \sup_{x \in X} \{ d(f_M(x), f(x)) \} = 0$$

3. Let $U \subseteq \mathbb{R}^d$ be an open set and $f : [0,1] \to U$ be continuous. For each $n \in \mathbb{N}$, define the n-polygonal approximation of f to be the function $\gamma_n : [0,1] \to \mathbb{R}^d$ given by:

$$\gamma_n(t) = f\left(\frac{i-1}{n}\right) + n\left(t - \frac{i-1}{n}\right)\left(f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right)\right)$$

where $i \in \{1, \ldots, n\}$ is such that $t \in \left[\frac{i-1}{n}, \frac{i}{n}\right]$.

(a) Show that γ_n is continuous for all $n \in \mathbb{N}$.

 $^{{}^{1}\}mathrm{In}\ \mathrm{case}\ \mathrm{of}\ \mathrm{any}\ \mathrm{problems}\ \mathrm{with}\ \mathrm{the}\ \mathrm{solution}\ \mathrm{to}\ \mathrm{the}\ \mathrm{exercises}\ \mathrm{please}\ \mathrm{email}\ \mathrm{brunosmaniotto}\ \mathrm{@berkeley.edu}$

- (b) Show that there exists $n_0 \in \mathbb{N}$ such that $\forall n \ge n_0 \gamma_n(t) \in U$ for all $t \in [0, 1]$.
- 4. Let (X, d) be a metric space. Given $x \in X$, we define the connected component of x in X as the set

$$C(x) = \bigcup_{\substack{U \subseteq X \text{ s.t } x \in U\\U \text{ is connected}}} U$$

Prove that:

- (a) For every $x \in X$, C(x) is a non-empty connected set.
- (b) For every two elements $x, y \in X$, they either share a connected component C(x) = C(y) or their connected components are disjoint $C(x) \cap C(y) = \emptyset$.
- (c) Conclude that there exists a subset $\mathcal{A} \subseteq X$ such that $X = \bigcup_{x \in \mathcal{A}} C(x)$, where \bigcup represents the disjoint union.
- 5. Define the correspondence $\Gamma : [0,1] \to 2^{[0,1]}$ by:

$$\Gamma(x) = \begin{cases} [0,1] \cap \mathbb{Q} & \text{if } x \in [0,1] \setminus \mathbb{Q} \\ [0,1] \setminus \mathbb{Q} & \text{if } x \in [0,1] \cap \mathbb{Q} \end{cases}.$$
(1)

Show that Γ is not continuous, but it is lower-hemicontinuous. Is Γ upper-hemicontinuous at any rational? At any irrational? Does this correspondence have a closed graph?

- 6. Let (X, d) be a compact metric space.
 - (a) Show that there exists A a countable subset of X such that $\overline{A} = X$.
 - (b) We say that $x \in X$ is an isolated point if there exists $\delta > 0$ such that $B(x, \delta) = \{x\}$. Show that the set of isolated points of X is empty, finite or countable.